Aromātai
20\sqrt{10}+12-15\sqrt{6}-50\sqrt{15}\approx -155.145960249
Tohaina
Kua tāruatia ki te papatopenga
12+20\sqrt{10}-15\sqrt{6}-25\sqrt{6}\sqrt{10}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4-5\sqrt{6} ki ia tau o 3+5\sqrt{10}.
12+20\sqrt{10}-15\sqrt{6}-25\sqrt{60}
Hei whakarea \sqrt{6} me \sqrt{10}, whakareatia ngā tau i raro i te pūtake rua.
12+20\sqrt{10}-15\sqrt{6}-25\times 2\sqrt{15}
Tauwehea te 60=2^{2}\times 15. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 15} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{15}. Tuhia te pūtakerua o te 2^{2}.
12+20\sqrt{10}-15\sqrt{6}-50\sqrt{15}
Whakareatia te -25 ki te 2, ka -50.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}