Whakaoti mō k
k=\frac{3t}{4\left(5-t\right)}
t\neq 5
Whakaoti mō t
t=\frac{20k}{4k+3}
k\neq -\frac{3}{4}
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
( 4 - \frac { 4 } { 5 } t ) k = \frac { 3 } { 5 } t
Tohaina
Kua tāruatia ki te papatopenga
4k-\frac{4}{5}tk=\frac{3}{5}t
Whakamahia te āhuatanga tohatoha hei whakarea te 4-\frac{4}{5}t ki te k.
\left(4-\frac{4}{5}t\right)k=\frac{3}{5}t
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\left(-\frac{4t}{5}+4\right)k=\frac{3t}{5}
He hanga arowhānui tō te whārite.
\frac{\left(-\frac{4t}{5}+4\right)k}{-\frac{4t}{5}+4}=\frac{3t}{5\left(-\frac{4t}{5}+4\right)}
Whakawehea ngā taha e rua ki te 4-\frac{4}{5}t.
k=\frac{3t}{5\left(-\frac{4t}{5}+4\right)}
Mā te whakawehe ki te 4-\frac{4}{5}t ka wetekia te whakareanga ki te 4-\frac{4}{5}t.
k=\frac{3t}{4\left(5-t\right)}
Whakawehe \frac{3t}{5} ki te 4-\frac{4}{5}t.
4k-\frac{4}{5}tk=\frac{3}{5}t
Whakamahia te āhuatanga tohatoha hei whakarea te 4-\frac{4}{5}t ki te k.
4k-\frac{4}{5}tk-\frac{3}{5}t=0
Tangohia te \frac{3}{5}t mai i ngā taha e rua.
-\frac{4}{5}tk-\frac{3}{5}t=-4k
Tangohia te 4k mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-\frac{4}{5}k-\frac{3}{5}\right)t=-4k
Pahekotia ngā kīanga tau katoa e whai ana i te t.
\frac{-4k-3}{5}t=-4k
He hanga arowhānui tō te whārite.
\frac{5\times \frac{-4k-3}{5}t}{-4k-3}=\frac{5\left(-4k\right)}{-4k-3}
Whakawehea ngā taha e rua ki te -\frac{4}{5}k-\frac{3}{5}.
t=\frac{5\left(-4k\right)}{-4k-3}
Mā te whakawehe ki te -\frac{4}{5}k-\frac{3}{5} ka wetekia te whakareanga ki te -\frac{4}{5}k-\frac{3}{5}.
t=\frac{20k}{4k+3}
Whakawehe -4k ki te -\frac{4}{5}k-\frac{3}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}