Aromātai
5a^{4}-1
Whakaroha
5a^{4}-1
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( 4 ) a ^ { 4 } - ( 1 - a ) ( 1 + a ) ( 1 + a ^ { 2 } )
Tohaina
Kua tāruatia ki te papatopenga
4a^{4}-\left(1-a^{2}\right)\left(1+a^{2}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 1-a ki te 1+a ka whakakotahi i ngā kupu rite.
4a^{4}-\left(1-\left(a^{2}\right)^{2}\right)
Whakaarohia te \left(1-a^{2}\right)\left(1+a^{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4a^{4}-\left(1-a^{4}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
4a^{4}-1+a^{4}
Hei kimi i te tauaro o 1-a^{4}, kimihia te tauaro o ia taurangi.
5a^{4}-1
Pahekotia te 4a^{4} me a^{4}, ka 5a^{4}.
4a^{4}-\left(1-a^{2}\right)\left(1+a^{2}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 1-a ki te 1+a ka whakakotahi i ngā kupu rite.
4a^{4}-\left(1-\left(a^{2}\right)^{2}\right)
Whakaarohia te \left(1-a^{2}\right)\left(1+a^{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4a^{4}-\left(1-a^{4}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
4a^{4}-1+a^{4}
Hei kimi i te tauaro o 1-a^{4}, kimihia te tauaro o ia taurangi.
5a^{4}-1
Pahekotia te 4a^{4} me a^{4}, ka 5a^{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}