Aromātai
-12
Tauwehe
-12
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4\left(-7\right)}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Tuhia te 4\left(-\frac{7}{8}\right) hei hautanga kotahi.
\frac{\frac{-28}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Whakareatia te 4 ki te -7, ka -28.
\frac{-\frac{7}{2}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Whakahekea te hautanga \frac{-28}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{-\frac{7}{2}}{\frac{4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Whakareatia te 1 ki te 4, ka 4.
\frac{-\frac{7}{2}}{\frac{7}{4}-\frac{7}{8}-\frac{7}{12}}
Tāpirihia te 4 ki te 3, ka 7.
\frac{-\frac{7}{2}}{\frac{14}{8}-\frac{7}{8}-\frac{7}{12}}
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri \frac{7}{4} me \frac{7}{8} ki te hautau me te tautūnga 8.
\frac{-\frac{7}{2}}{\frac{14-7}{8}-\frac{7}{12}}
Tā te mea he rite te tauraro o \frac{14}{8} me \frac{7}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{7}{2}}{\frac{7}{8}-\frac{7}{12}}
Tangohia te 7 i te 14, ka 7.
\frac{-\frac{7}{2}}{\frac{21}{24}-\frac{14}{24}}
Ko te maha noa iti rawa atu o 8 me 12 ko 24. Me tahuri \frac{7}{8} me \frac{7}{12} ki te hautau me te tautūnga 24.
\frac{-\frac{7}{2}}{\frac{21-14}{24}}
Tā te mea he rite te tauraro o \frac{21}{24} me \frac{14}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{7}{2}}{\frac{7}{24}}
Tangohia te 14 i te 21, ka 7.
-\frac{7}{2}\times \frac{24}{7}
Whakawehe -\frac{7}{2} ki te \frac{7}{24} mā te whakarea -\frac{7}{2} ki te tau huripoki o \frac{7}{24}.
\frac{-7\times 24}{2\times 7}
Me whakarea te -\frac{7}{2} ki te \frac{24}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-168}{14}
Mahia ngā whakarea i roto i te hautanga \frac{-7\times 24}{2\times 7}.
-12
Whakawehea te -168 ki te 14, kia riro ko -12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}