Aromātai
-8
Tauwehe
-8
Tohaina
Kua tāruatia ki te papatopenga
\left(4\sqrt{3}-4\sqrt{5}\right)\left(\sqrt{5}+\sqrt{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te \sqrt{3}-\sqrt{5}.
4\sqrt{3}\sqrt{5}+4\left(\sqrt{3}\right)^{2}-4\left(\sqrt{5}\right)^{2}-4\sqrt{5}\sqrt{3}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4\sqrt{3}-4\sqrt{5} ki ia tau o \sqrt{5}+\sqrt{3}.
4\sqrt{15}+4\left(\sqrt{3}\right)^{2}-4\left(\sqrt{5}\right)^{2}-4\sqrt{5}\sqrt{3}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
4\sqrt{15}+4\times 3-4\left(\sqrt{5}\right)^{2}-4\sqrt{5}\sqrt{3}
Ko te pūrua o \sqrt{3} ko 3.
4\sqrt{15}+12-4\left(\sqrt{5}\right)^{2}-4\sqrt{5}\sqrt{3}
Whakareatia te 4 ki te 3, ka 12.
4\sqrt{15}+12-4\times 5-4\sqrt{5}\sqrt{3}
Ko te pūrua o \sqrt{5} ko 5.
4\sqrt{15}+12-20-4\sqrt{5}\sqrt{3}
Whakareatia te -4 ki te 5, ka -20.
4\sqrt{15}-8-4\sqrt{5}\sqrt{3}
Tangohia te 20 i te 12, ka -8.
4\sqrt{15}-8-4\sqrt{15}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
-8
Pahekotia te 4\sqrt{15} me -4\sqrt{15}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}