Aromātai
-28
Tauwehe
-28
Tohaina
Kua tāruatia ki te papatopenga
\left(4\sqrt{2}+8\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)+\left(2\sqrt{3}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te \sqrt{2}+2\sqrt{3}.
4\left(\sqrt{2}\right)^{2}-16\left(\sqrt{3}\right)^{2}+\left(2\sqrt{3}\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 4\sqrt{2}+8\sqrt{3} ki te \sqrt{2}-2\sqrt{3} ka whakakotahi i ngā kupu rite.
4\times 2-16\left(\sqrt{3}\right)^{2}+\left(2\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
8-16\left(\sqrt{3}\right)^{2}+\left(2\sqrt{3}\right)^{2}
Whakareatia te 4 ki te 2, ka 8.
8-16\times 3+\left(2\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
8-48+\left(2\sqrt{3}\right)^{2}
Whakareatia te -16 ki te 3, ka -48.
-40+\left(2\sqrt{3}\right)^{2}
Tangohia te 48 i te 8, ka -40.
-40+2^{2}\left(\sqrt{3}\right)^{2}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
-40+4\left(\sqrt{3}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
-40+4\times 3
Ko te pūrua o \sqrt{3} ko 3.
-40+12
Whakareatia te 4 ki te 3, ka 12.
-28
Tāpirihia te -40 ki te 12, ka -28.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}