Aromātai
-2\sqrt{3}-12\approx -15.464101615
Tauwehe
2 {(-\sqrt{3} - 6)} = -15.464101615
Tohaina
Kua tāruatia ki te papatopenga
8\sqrt{2}\sqrt{6}+12\left(\sqrt{2}\right)^{2}-6\left(\sqrt{6}\right)^{2}-9\sqrt{6}\sqrt{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4\sqrt{2}-3\sqrt{6} ki ia tau o 2\sqrt{6}+3\sqrt{2}.
8\sqrt{2}\sqrt{2}\sqrt{3}+12\left(\sqrt{2}\right)^{2}-6\left(\sqrt{6}\right)^{2}-9\sqrt{6}\sqrt{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
8\times 2\sqrt{3}+12\left(\sqrt{2}\right)^{2}-6\left(\sqrt{6}\right)^{2}-9\sqrt{6}\sqrt{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
16\sqrt{3}+12\left(\sqrt{2}\right)^{2}-6\left(\sqrt{6}\right)^{2}-9\sqrt{6}\sqrt{2}
Whakareatia te 8 ki te 2, ka 16.
16\sqrt{3}+12\times 2-6\left(\sqrt{6}\right)^{2}-9\sqrt{6}\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
16\sqrt{3}+24-6\left(\sqrt{6}\right)^{2}-9\sqrt{6}\sqrt{2}
Whakareatia te 12 ki te 2, ka 24.
16\sqrt{3}+24-6\times 6-9\sqrt{6}\sqrt{2}
Ko te pūrua o \sqrt{6} ko 6.
16\sqrt{3}+24-36-9\sqrt{6}\sqrt{2}
Whakareatia te -6 ki te 6, ka -36.
16\sqrt{3}-12-9\sqrt{6}\sqrt{2}
Tangohia te 36 i te 24, ka -12.
16\sqrt{3}-12-9\sqrt{2}\sqrt{3}\sqrt{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
16\sqrt{3}-12-9\times 2\sqrt{3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
16\sqrt{3}-12-18\sqrt{3}
Whakareatia te -9 ki te 2, ka -18.
-2\sqrt{3}-12
Pahekotia te 16\sqrt{3} me -18\sqrt{3}, ka -2\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}