Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(4\sqrt{2}\right)^{2}-\left(\sqrt{14}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{14}\right)^{2}
Whakarohaina te \left(4\sqrt{2}\right)^{2}.
16\left(\sqrt{2}\right)^{2}-\left(\sqrt{14}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16\times 2-\left(\sqrt{14}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
32-\left(\sqrt{14}\right)^{2}
Whakareatia te 16 ki te 2, ka 32.
32-14
Ko te pūrua o \sqrt{14} ko 14.
18
Tangohia te 14 i te 32, ka 18.