Aromātai
9.5
Tauwehe
\frac{19}{2} = 9\frac{1}{2} = 9.5
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{20+2}{5}-2.9\right)\times \frac{6\times 3+1}{3}
Whakareatia te 4 ki te 5, ka 20.
\left(\frac{22}{5}-2.9\right)\times \frac{6\times 3+1}{3}
Tāpirihia te 20 ki te 2, ka 22.
\left(\frac{22}{5}-\frac{29}{10}\right)\times \frac{6\times 3+1}{3}
Me tahuri ki tau ā-ira 2.9 ki te hautau \frac{29}{10}.
\left(\frac{44}{10}-\frac{29}{10}\right)\times \frac{6\times 3+1}{3}
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri \frac{22}{5} me \frac{29}{10} ki te hautau me te tautūnga 10.
\frac{44-29}{10}\times \frac{6\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{44}{10} me \frac{29}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{15}{10}\times \frac{6\times 3+1}{3}
Tangohia te 29 i te 44, ka 15.
\frac{3}{2}\times \frac{6\times 3+1}{3}
Whakahekea te hautanga \frac{15}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{3}{2}\times \frac{18+1}{3}
Whakareatia te 6 ki te 3, ka 18.
\frac{3}{2}\times \frac{19}{3}
Tāpirihia te 18 ki te 1, ka 19.
\frac{3\times 19}{2\times 3}
Me whakarea te \frac{3}{2} ki te \frac{19}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{19}{2}
Me whakakore tahi te 3 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}