Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{12}{3}+\frac{1}{3}\right)\left(n-\frac{1}{3}\right)
Me tahuri te 4 ki te hautau \frac{12}{3}.
\frac{12+1}{3}\left(n-\frac{1}{3}\right)
Tā te mea he rite te tauraro o \frac{12}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{3}\left(n-\frac{1}{3}\right)
Tāpirihia te 12 ki te 1, ka 13.
\frac{13}{3}n+\frac{13}{3}\left(-\frac{1}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{13}{3} ki te n-\frac{1}{3}.
\frac{13}{3}n+\frac{13\left(-1\right)}{3\times 3}
Me whakarea te \frac{13}{3} ki te -\frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{13}{3}n+\frac{-13}{9}
Mahia ngā whakarea i roto i te hautanga \frac{13\left(-1\right)}{3\times 3}.
\frac{13}{3}n-\frac{13}{9}
Ka taea te hautanga \frac{-13}{9} te tuhi anō ko -\frac{13}{9} mā te tango i te tohu tōraro.
\left(\frac{12}{3}+\frac{1}{3}\right)\left(n-\frac{1}{3}\right)
Me tahuri te 4 ki te hautau \frac{12}{3}.
\frac{12+1}{3}\left(n-\frac{1}{3}\right)
Tā te mea he rite te tauraro o \frac{12}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{3}\left(n-\frac{1}{3}\right)
Tāpirihia te 12 ki te 1, ka 13.
\frac{13}{3}n+\frac{13}{3}\left(-\frac{1}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{13}{3} ki te n-\frac{1}{3}.
\frac{13}{3}n+\frac{13\left(-1\right)}{3\times 3}
Me whakarea te \frac{13}{3} ki te -\frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{13}{3}n+\frac{-13}{9}
Mahia ngā whakarea i roto i te hautanga \frac{13\left(-1\right)}{3\times 3}.
\frac{13}{3}n-\frac{13}{9}
Ka taea te hautanga \frac{-13}{9} te tuhi anō ko -\frac{13}{9} mā te tango i te tohu tōraro.