Aromātai
\frac{13n}{3}-\frac{13}{9}
Whakaroha
\frac{13n}{3}-\frac{13}{9}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{12}{3}+\frac{1}{3}\right)\left(n-\frac{1}{3}\right)
Me tahuri te 4 ki te hautau \frac{12}{3}.
\frac{12+1}{3}\left(n-\frac{1}{3}\right)
Tā te mea he rite te tauraro o \frac{12}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{3}\left(n-\frac{1}{3}\right)
Tāpirihia te 12 ki te 1, ka 13.
\frac{13}{3}n+\frac{13}{3}\left(-\frac{1}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{13}{3} ki te n-\frac{1}{3}.
\frac{13}{3}n+\frac{13\left(-1\right)}{3\times 3}
Me whakarea te \frac{13}{3} ki te -\frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{13}{3}n+\frac{-13}{9}
Mahia ngā whakarea i roto i te hautanga \frac{13\left(-1\right)}{3\times 3}.
\frac{13}{3}n-\frac{13}{9}
Ka taea te hautanga \frac{-13}{9} te tuhi anō ko -\frac{13}{9} mā te tango i te tohu tōraro.
\left(\frac{12}{3}+\frac{1}{3}\right)\left(n-\frac{1}{3}\right)
Me tahuri te 4 ki te hautau \frac{12}{3}.
\frac{12+1}{3}\left(n-\frac{1}{3}\right)
Tā te mea he rite te tauraro o \frac{12}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{3}\left(n-\frac{1}{3}\right)
Tāpirihia te 12 ki te 1, ka 13.
\frac{13}{3}n+\frac{13}{3}\left(-\frac{1}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{13}{3} ki te n-\frac{1}{3}.
\frac{13}{3}n+\frac{13\left(-1\right)}{3\times 3}
Me whakarea te \frac{13}{3} ki te -\frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{13}{3}n+\frac{-13}{9}
Mahia ngā whakarea i roto i te hautanga \frac{13\left(-1\right)}{3\times 3}.
\frac{13}{3}n-\frac{13}{9}
Ka taea te hautanga \frac{-13}{9} te tuhi anō ko -\frac{13}{9} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}