Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

36^{-\frac{1}{2}}\left(x^{-4}\right)^{-\frac{1}{2}}
Whakarohaina te \left(36x^{-4}\right)^{-\frac{1}{2}}.
36^{-\frac{1}{2}}x^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -4 me te -\frac{1}{2} kia riro ai te 2.
\frac{1}{6}x^{2}
Tātaihia te 36 mā te pū o -\frac{1}{2}, kia riro ko \frac{1}{6}.
-\frac{1}{2}\times \left(36x^{-4}\right)^{-\frac{1}{2}-1}\frac{\mathrm{d}}{\mathrm{d}x}(36x^{-4})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{1}{2}\times \left(36x^{-4}\right)^{-\frac{3}{2}}\left(-4\right)\times 36x^{-4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
72x^{-5}\times \left(36x^{-4}\right)^{-\frac{3}{2}}
Whakarūnātia.