Whakaoti mō x
x=20
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
( 34 - x ) \frac { 4 } { 7 } = \frac { 2 } { 5 } x
Tohaina
Kua tāruatia ki te papatopenga
34\times \frac{4}{7}-x\times \frac{4}{7}=\frac{2}{5}x
Whakamahia te āhuatanga tohatoha hei whakarea te 34-x ki te \frac{4}{7}.
\frac{34\times 4}{7}-x\times \frac{4}{7}=\frac{2}{5}x
Tuhia te 34\times \frac{4}{7} hei hautanga kotahi.
\frac{136}{7}-x\times \frac{4}{7}=\frac{2}{5}x
Whakareatia te 34 ki te 4, ka 136.
\frac{136}{7}-\frac{4}{7}x=\frac{2}{5}x
Whakareatia te -1 ki te \frac{4}{7}, ka -\frac{4}{7}.
\frac{136}{7}-\frac{4}{7}x-\frac{2}{5}x=0
Tangohia te \frac{2}{5}x mai i ngā taha e rua.
\frac{136}{7}-\frac{34}{35}x=0
Pahekotia te -\frac{4}{7}x me -\frac{2}{5}x, ka -\frac{34}{35}x.
-\frac{34}{35}x=-\frac{136}{7}
Tangohia te \frac{136}{7} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{136}{7}\left(-\frac{35}{34}\right)
Me whakarea ngā taha e rua ki te -\frac{35}{34}, te tau utu o -\frac{34}{35}.
x=\frac{-136\left(-35\right)}{7\times 34}
Me whakarea te -\frac{136}{7} ki te -\frac{35}{34} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{4760}{238}
Mahia ngā whakarea i roto i te hautanga \frac{-136\left(-35\right)}{7\times 34}.
x=20
Whakawehea te 4760 ki te 238, kia riro ko 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}