Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3y^{3}-6y^{2}-7y+2y-5
Pahekotia te -2y^{2} me -4y^{2}, ka -6y^{2}.
3y^{3}-6y^{2}-5y-5
Pahekotia te -7y me 2y, ka -5y.
\frac{\mathrm{d}}{\mathrm{d}y}(3y^{3}-6y^{2}-7y+2y-5)
Pahekotia te -2y^{2} me -4y^{2}, ka -6y^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(3y^{3}-6y^{2}-5y-5)
Pahekotia te -7y me 2y, ka -5y.
3\times 3y^{3-1}+2\left(-6\right)y^{2-1}-5y^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
9y^{3-1}+2\left(-6\right)y^{2-1}-5y^{1-1}
Whakareatia 3 ki te 3.
9y^{2}+2\left(-6\right)y^{2-1}-5y^{1-1}
Tango 1 mai i 3.
9y^{2}-12y^{2-1}-5y^{1-1}
Whakareatia 2 ki te -6.
9y^{2}-12y^{1}-5y^{1-1}
Tango 1 mai i 2.
9y^{2}-12y^{1}-5y^{0}
Tango 1 mai i 1.
9y^{2}-12y-5y^{0}
Mō tētahi kupu t, t^{1}=t.
9y^{2}-12y-5
Mō tētahi kupu t mahue te 0, t^{0}=1.