Aromātai
3y^{3}-6y^{2}-5y-5
Kimi Pārōnaki e ai ki y
\left(3y-5\right)\left(3y+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
3y^{3}-6y^{2}-7y+2y-5
Pahekotia te -2y^{2} me -4y^{2}, ka -6y^{2}.
3y^{3}-6y^{2}-5y-5
Pahekotia te -7y me 2y, ka -5y.
\frac{\mathrm{d}}{\mathrm{d}y}(3y^{3}-6y^{2}-7y+2y-5)
Pahekotia te -2y^{2} me -4y^{2}, ka -6y^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(3y^{3}-6y^{2}-5y-5)
Pahekotia te -7y me 2y, ka -5y.
3\times 3y^{3-1}+2\left(-6\right)y^{2-1}-5y^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
9y^{3-1}+2\left(-6\right)y^{2-1}-5y^{1-1}
Whakareatia 3 ki te 3.
9y^{2}+2\left(-6\right)y^{2-1}-5y^{1-1}
Tango 1 mai i 3.
9y^{2}-12y^{2-1}-5y^{1-1}
Whakareatia 2 ki te -6.
9y^{2}-12y^{1}-5y^{1-1}
Tango 1 mai i 2.
9y^{2}-12y^{1}-5y^{0}
Tango 1 mai i 1.
9y^{2}-12y-5y^{0}
Mō tētahi kupu t, t^{1}=t.
9y^{2}-12y-5
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}