Whakaoti mō x
x = \frac{15}{11} = 1\frac{4}{11} \approx 1.363636364
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-5-10x+40=20+4x
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 2x-8.
-7x-5+40=20+4x
Pahekotia te 3x me -10x, ka -7x.
-7x+35=20+4x
Tāpirihia te -5 ki te 40, ka 35.
-7x+35-4x=20
Tangohia te 4x mai i ngā taha e rua.
-11x+35=20
Pahekotia te -7x me -4x, ka -11x.
-11x=20-35
Tangohia te 35 mai i ngā taha e rua.
-11x=-15
Tangohia te 35 i te 20, ka -15.
x=\frac{-15}{-11}
Whakawehea ngā taha e rua ki te -11.
x=\frac{15}{11}
Ka taea te hautanga \frac{-15}{-11} te whakamāmā ki te \frac{15}{11} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}