Whakaoti mō x
x=\frac{1}{4}=0.25
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}-24x+16-\left(x+3\right)^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-4\right)^{2}.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
9x^{2}-24x+16-x^{2}-6x-9=0
Hei kimi i te tauaro o x^{2}+6x+9, kimihia te tauaro o ia taurangi.
8x^{2}-24x+16-6x-9=0
Pahekotia te 9x^{2} me -x^{2}, ka 8x^{2}.
8x^{2}-30x+16-9=0
Pahekotia te -24x me -6x, ka -30x.
8x^{2}-30x+7=0
Tangohia te 9 i te 16, ka 7.
a+b=-30 ab=8\times 7=56
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 8x^{2}+ax+bx+7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-56 -2,-28 -4,-14 -7,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 56.
-1-56=-57 -2-28=-30 -4-14=-18 -7-8=-15
Tātaihia te tapeke mō ia takirua.
a=-28 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -30.
\left(8x^{2}-28x\right)+\left(-2x+7\right)
Tuhia anō te 8x^{2}-30x+7 hei \left(8x^{2}-28x\right)+\left(-2x+7\right).
4x\left(2x-7\right)-\left(2x-7\right)
Tauwehea te 4x i te tuatahi me te -1 i te rōpū tuarua.
\left(2x-7\right)\left(4x-1\right)
Whakatauwehea atu te kīanga pātahi 2x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{7}{2} x=\frac{1}{4}
Hei kimi otinga whārite, me whakaoti te 2x-7=0 me te 4x-1=0.
9x^{2}-24x+16-\left(x+3\right)^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-4\right)^{2}.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
9x^{2}-24x+16-x^{2}-6x-9=0
Hei kimi i te tauaro o x^{2}+6x+9, kimihia te tauaro o ia taurangi.
8x^{2}-24x+16-6x-9=0
Pahekotia te 9x^{2} me -x^{2}, ka 8x^{2}.
8x^{2}-30x+16-9=0
Pahekotia te -24x me -6x, ka -30x.
8x^{2}-30x+7=0
Tangohia te 9 i te 16, ka 7.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 8\times 7}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -30 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 8\times 7}}{2\times 8}
Pūrua -30.
x=\frac{-\left(-30\right)±\sqrt{900-32\times 7}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-30\right)±\sqrt{900-224}}{2\times 8}
Whakareatia -32 ki te 7.
x=\frac{-\left(-30\right)±\sqrt{676}}{2\times 8}
Tāpiri 900 ki te -224.
x=\frac{-\left(-30\right)±26}{2\times 8}
Tuhia te pūtakerua o te 676.
x=\frac{30±26}{2\times 8}
Ko te tauaro o -30 ko 30.
x=\frac{30±26}{16}
Whakareatia 2 ki te 8.
x=\frac{56}{16}
Nā, me whakaoti te whārite x=\frac{30±26}{16} ina he tāpiri te ±. Tāpiri 30 ki te 26.
x=\frac{7}{2}
Whakahekea te hautanga \frac{56}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=\frac{4}{16}
Nā, me whakaoti te whārite x=\frac{30±26}{16} ina he tango te ±. Tango 26 mai i 30.
x=\frac{1}{4}
Whakahekea te hautanga \frac{4}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{7}{2} x=\frac{1}{4}
Kua oti te whārite te whakatau.
9x^{2}-24x+16-\left(x+3\right)^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-4\right)^{2}.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
9x^{2}-24x+16-x^{2}-6x-9=0
Hei kimi i te tauaro o x^{2}+6x+9, kimihia te tauaro o ia taurangi.
8x^{2}-24x+16-6x-9=0
Pahekotia te 9x^{2} me -x^{2}, ka 8x^{2}.
8x^{2}-30x+16-9=0
Pahekotia te -24x me -6x, ka -30x.
8x^{2}-30x+7=0
Tangohia te 9 i te 16, ka 7.
8x^{2}-30x=-7
Tangohia te 7 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{8x^{2}-30x}{8}=-\frac{7}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}+\left(-\frac{30}{8}\right)x=-\frac{7}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}-\frac{15}{4}x=-\frac{7}{8}
Whakahekea te hautanga \frac{-30}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{15}{4}x+\left(-\frac{15}{8}\right)^{2}=-\frac{7}{8}+\left(-\frac{15}{8}\right)^{2}
Whakawehea te -\frac{15}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{8}. Nā, tāpiria te pūrua o te -\frac{15}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{15}{4}x+\frac{225}{64}=-\frac{7}{8}+\frac{225}{64}
Pūruatia -\frac{15}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{169}{64}
Tāpiri -\frac{7}{8} ki te \frac{225}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{15}{8}\right)^{2}=\frac{169}{64}
Tauwehea x^{2}-\frac{15}{4}x+\frac{225}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{8}=\frac{13}{8} x-\frac{15}{8}=-\frac{13}{8}
Whakarūnātia.
x=\frac{7}{2} x=\frac{1}{4}
Me tāpiri \frac{15}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}