Aromātai
\left(1-x\right)\left(5x+1\right)
Whakaroha
1+4x-5x^{2}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( 3 x - 2 ) \cdot ( - x + 1 ) - ( 2 x + 3 ) \cdot ( x - 1 ) =
Tohaina
Kua tāruatia ki te papatopenga
3x\left(-x\right)+3x-2\left(-x\right)-2-\left(2x+3\right)\left(x-1\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3x-2 ki ia tau o -x+1.
3x\left(-x\right)+3x+2x-2-\left(2x+3\right)\left(x-1\right)
Whakareatia te -2 ki te -1, ka 2.
3x\left(-x\right)+5x-2-\left(2x+3\right)\left(x-1\right)
Pahekotia te 3x me 2x, ka 5x.
3x\left(-x\right)+5x-2-\left(2x^{2}-2x+3x-3\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x+3 ki ia tau o x-1.
3x\left(-x\right)+5x-2-\left(2x^{2}+x-3\right)
Pahekotia te -2x me 3x, ka x.
3x\left(-x\right)+5x-2-2x^{2}-x-\left(-3\right)
Hei kimi i te tauaro o 2x^{2}+x-3, kimihia te tauaro o ia taurangi.
3x\left(-x\right)+5x-2-2x^{2}-x+3
Ko te tauaro o -3 ko 3.
3x\left(-x\right)+4x-2-2x^{2}+3
Pahekotia te 5x me -x, ka 4x.
3x\left(-x\right)+4x+1-2x^{2}
Tāpirihia te -2 ki te 3, ka 1.
-3xx+4x+1-2x^{2}
Whakareatia te 3 ki te -1, ka -3.
-3x^{2}+4x+1-2x^{2}
Whakareatia te x ki te x, ka x^{2}.
-5x^{2}+4x+1
Pahekotia te -3x^{2} me -2x^{2}, ka -5x^{2}.
3x\left(-x\right)+3x-2\left(-x\right)-2-\left(2x+3\right)\left(x-1\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3x-2 ki ia tau o -x+1.
3x\left(-x\right)+3x+2x-2-\left(2x+3\right)\left(x-1\right)
Whakareatia te -2 ki te -1, ka 2.
3x\left(-x\right)+5x-2-\left(2x+3\right)\left(x-1\right)
Pahekotia te 3x me 2x, ka 5x.
3x\left(-x\right)+5x-2-\left(2x^{2}-2x+3x-3\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x+3 ki ia tau o x-1.
3x\left(-x\right)+5x-2-\left(2x^{2}+x-3\right)
Pahekotia te -2x me 3x, ka x.
3x\left(-x\right)+5x-2-2x^{2}-x-\left(-3\right)
Hei kimi i te tauaro o 2x^{2}+x-3, kimihia te tauaro o ia taurangi.
3x\left(-x\right)+5x-2-2x^{2}-x+3
Ko te tauaro o -3 ko 3.
3x\left(-x\right)+4x-2-2x^{2}+3
Pahekotia te 5x me -x, ka 4x.
3x\left(-x\right)+4x+1-2x^{2}
Tāpirihia te -2 ki te 3, ka 1.
-3xx+4x+1-2x^{2}
Whakareatia te 3 ki te -1, ka -3.
-3x^{2}+4x+1-2x^{2}
Whakareatia te x ki te x, ka x^{2}.
-5x^{2}+4x+1
Pahekotia te -3x^{2} me -2x^{2}, ka -5x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}