Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{3}+12x-x^{2}-4=\left(3x-1\right)\left(8x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te x^{2}+4.
3x^{3}+12x-x^{2}-4=24x^{2}-17x+3
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-1 ki te 8x-3 ka whakakotahi i ngā kupu rite.
3x^{3}+12x-x^{2}-4-24x^{2}=-17x+3
Tangohia te 24x^{2} mai i ngā taha e rua.
3x^{3}+12x-25x^{2}-4=-17x+3
Pahekotia te -x^{2} me -24x^{2}, ka -25x^{2}.
3x^{3}+12x-25x^{2}-4+17x=3
Me tāpiri te 17x ki ngā taha e rua.
3x^{3}+29x-25x^{2}-4=3
Pahekotia te 12x me 17x, ka 29x.
3x^{3}+29x-25x^{2}-4-3=0
Tangohia te 3 mai i ngā taha e rua.
3x^{3}+29x-25x^{2}-7=0
Tangohia te 3 i te -4, ka -7.
3x^{3}-25x^{2}+29x-7=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±\frac{7}{3},±7,±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -7, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{2}-22x+7=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}-25x^{2}+29x-7 ki te x-1, kia riro ko 3x^{2}-22x+7. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 3\times 7}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te -22 mō te b, me te 7 mō te c i te ture pūrua.
x=\frac{22±20}{6}
Mahia ngā tātaitai.
x=\frac{1}{3} x=7
Whakaotia te whārite 3x^{2}-22x+7=0 ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=\frac{1}{3} x=7
Rārangitia ngā otinga katoa i kitea.