Whakaoti mō x
x=1
x=7
x=\frac{1}{3}\approx 0.333333333
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( 3 x - 1 ) ( x ^ { 2 } + 4 ) = ( 3 x - 1 ) ( 8 x - 3 )
Tohaina
Kua tāruatia ki te papatopenga
3x^{3}+12x-x^{2}-4=\left(3x-1\right)\left(8x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te x^{2}+4.
3x^{3}+12x-x^{2}-4=24x^{2}-17x+3
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-1 ki te 8x-3 ka whakakotahi i ngā kupu rite.
3x^{3}+12x-x^{2}-4-24x^{2}=-17x+3
Tangohia te 24x^{2} mai i ngā taha e rua.
3x^{3}+12x-25x^{2}-4=-17x+3
Pahekotia te -x^{2} me -24x^{2}, ka -25x^{2}.
3x^{3}+12x-25x^{2}-4+17x=3
Me tāpiri te 17x ki ngā taha e rua.
3x^{3}+29x-25x^{2}-4=3
Pahekotia te 12x me 17x, ka 29x.
3x^{3}+29x-25x^{2}-4-3=0
Tangohia te 3 mai i ngā taha e rua.
3x^{3}+29x-25x^{2}-7=0
Tangohia te 3 i te -4, ka -7.
3x^{3}-25x^{2}+29x-7=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±\frac{7}{3},±7,±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -7, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{2}-22x+7=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}-25x^{2}+29x-7 ki te x-1, kia riro ko 3x^{2}-22x+7. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 3\times 7}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te -22 mō te b, me te 7 mō te c i te ture pūrua.
x=\frac{22±20}{6}
Mahia ngā tātaitai.
x=\frac{1}{3} x=7
Whakaotia te whārite 3x^{2}-22x+7=0 ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=\frac{1}{3} x=7
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}