Aromātai
35x+3
Whakaroha
35x+3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x\right)^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Whakaarohia te \left(3x-1\right)\left(3x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Whakarohaina te \left(3x\right)^{2}.
9x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9x^{2}-1-\left(x-4\right)\left(9x+1\right)
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
9x^{2}-1-\left(9x^{2}+x-36x-4\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-4 ki ia tau o 9x+1.
9x^{2}-1-\left(9x^{2}-35x-4\right)
Pahekotia te x me -36x, ka -35x.
9x^{2}-1-9x^{2}-\left(-35x\right)-\left(-4\right)
Hei kimi i te tauaro o 9x^{2}-35x-4, kimihia te tauaro o ia taurangi.
9x^{2}-1-9x^{2}+35x-\left(-4\right)
Ko te tauaro o -35x ko 35x.
9x^{2}-1-9x^{2}+35x+4
Ko te tauaro o -4 ko 4.
-1+35x+4
Pahekotia te 9x^{2} me -9x^{2}, ka 0.
3+35x
Tāpirihia te -1 ki te 4, ka 3.
\left(3x\right)^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Whakaarohia te \left(3x-1\right)\left(3x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Whakarohaina te \left(3x\right)^{2}.
9x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9x^{2}-1-\left(x-4\right)\left(9x+1\right)
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
9x^{2}-1-\left(9x^{2}+x-36x-4\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-4 ki ia tau o 9x+1.
9x^{2}-1-\left(9x^{2}-35x-4\right)
Pahekotia te x me -36x, ka -35x.
9x^{2}-1-9x^{2}-\left(-35x\right)-\left(-4\right)
Hei kimi i te tauaro o 9x^{2}-35x-4, kimihia te tauaro o ia taurangi.
9x^{2}-1-9x^{2}+35x-\left(-4\right)
Ko te tauaro o -35x ko 35x.
9x^{2}-1-9x^{2}+35x+4
Ko te tauaro o -4 ko 4.
-1+35x+4
Pahekotia te 9x^{2} me -9x^{2}, ka 0.
3+35x
Tāpirihia te -1 ki te 4, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}