Whakaoti mō x
x=\frac{2\sqrt{15}}{5}+1\approx 2.549193338
x=-\frac{2\sqrt{15}}{5}+1\approx -0.549193338
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}-6x+1-\left(2x+1\right)^{2}=7
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-1\right)^{2}.
9x^{2}-6x+1-\left(4x^{2}+4x+1\right)=7
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
9x^{2}-6x+1-4x^{2}-4x-1=7
Hei kimi i te tauaro o 4x^{2}+4x+1, kimihia te tauaro o ia taurangi.
5x^{2}-6x+1-4x-1=7
Pahekotia te 9x^{2} me -4x^{2}, ka 5x^{2}.
5x^{2}-10x+1-1=7
Pahekotia te -6x me -4x, ka -10x.
5x^{2}-10x=7
Tangohia te 1 i te 1, ka 0.
5x^{2}-10x-7=0
Tangohia te 7 mai i ngā taha e rua.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-7\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -10 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-7\right)}}{2\times 5}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-7\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-10\right)±\sqrt{100+140}}{2\times 5}
Whakareatia -20 ki te -7.
x=\frac{-\left(-10\right)±\sqrt{240}}{2\times 5}
Tāpiri 100 ki te 140.
x=\frac{-\left(-10\right)±4\sqrt{15}}{2\times 5}
Tuhia te pūtakerua o te 240.
x=\frac{10±4\sqrt{15}}{2\times 5}
Ko te tauaro o -10 ko 10.
x=\frac{10±4\sqrt{15}}{10}
Whakareatia 2 ki te 5.
x=\frac{4\sqrt{15}+10}{10}
Nā, me whakaoti te whārite x=\frac{10±4\sqrt{15}}{10} ina he tāpiri te ±. Tāpiri 10 ki te 4\sqrt{15}.
x=\frac{2\sqrt{15}}{5}+1
Whakawehe 10+4\sqrt{15} ki te 10.
x=\frac{10-4\sqrt{15}}{10}
Nā, me whakaoti te whārite x=\frac{10±4\sqrt{15}}{10} ina he tango te ±. Tango 4\sqrt{15} mai i 10.
x=-\frac{2\sqrt{15}}{5}+1
Whakawehe 10-4\sqrt{15} ki te 10.
x=\frac{2\sqrt{15}}{5}+1 x=-\frac{2\sqrt{15}}{5}+1
Kua oti te whārite te whakatau.
9x^{2}-6x+1-\left(2x+1\right)^{2}=7
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-1\right)^{2}.
9x^{2}-6x+1-\left(4x^{2}+4x+1\right)=7
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
9x^{2}-6x+1-4x^{2}-4x-1=7
Hei kimi i te tauaro o 4x^{2}+4x+1, kimihia te tauaro o ia taurangi.
5x^{2}-6x+1-4x-1=7
Pahekotia te 9x^{2} me -4x^{2}, ka 5x^{2}.
5x^{2}-10x+1-1=7
Pahekotia te -6x me -4x, ka -10x.
5x^{2}-10x=7
Tangohia te 1 i te 1, ka 0.
\frac{5x^{2}-10x}{5}=\frac{7}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{7}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-2x=\frac{7}{5}
Whakawehe -10 ki te 5.
x^{2}-2x+1=\frac{7}{5}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{12}{5}
Tāpiri \frac{7}{5} ki te 1.
\left(x-1\right)^{2}=\frac{12}{5}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{12}{5}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{2\sqrt{15}}{5} x-1=-\frac{2\sqrt{15}}{5}
Whakarūnātia.
x=\frac{2\sqrt{15}}{5}+1 x=-\frac{2\sqrt{15}}{5}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}