Whakaoti mō x
x=-\frac{19}{20}=-0.95
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-2x-1-3\left(x+3\right)^{2}=-9
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+1 ki te x-1 ka whakakotahi i ngā kupu rite.
3x^{2}-2x-1-3\left(x^{2}+6x+9\right)=-9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
3x^{2}-2x-1-3x^{2}-18x-27=-9
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x^{2}+6x+9.
-2x-1-18x-27=-9
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
-20x-1-27=-9
Pahekotia te -2x me -18x, ka -20x.
-20x-28=-9
Tangohia te 27 i te -1, ka -28.
-20x=-9+28
Me tāpiri te 28 ki ngā taha e rua.
-20x=19
Tāpirihia te -9 ki te 28, ka 19.
x=\frac{19}{-20}
Whakawehea ngā taha e rua ki te -20.
x=-\frac{19}{20}
Ka taea te hautanga \frac{19}{-20} te tuhi anō ko -\frac{19}{20} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}