Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-2x-1-3\left(x+3\right)^{2}=-9
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+1 ki te x-1 ka whakakotahi i ngā kupu rite.
3x^{2}-2x-1-3\left(x^{2}+6x+9\right)=-9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
3x^{2}-2x-1-3x^{2}-18x-27=-9
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x^{2}+6x+9.
-2x-1-18x-27=-9
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
-20x-1-27=-9
Pahekotia te -2x me -18x, ka -20x.
-20x-28=-9
Tangohia te 27 i te -1, ka -28.
-20x=-9+28
Me tāpiri te 28 ki ngā taha e rua.
-20x=19
Tāpirihia te -9 ki te 28, ka 19.
x=\frac{19}{-20}
Whakawehea ngā taha e rua ki te -20.
x=-\frac{19}{20}
Ka taea te hautanga \frac{19}{-20} te tuhi anō ko -\frac{19}{20} mā te tango i te tohu tōraro.