Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(3x+1\right)\left(3x-1\right)+\left(x-2\right)^{2}=2-4x
Whakareatia ngā taha e rua o te whārite ki te 2.
\left(6x+2\right)\left(3x-1\right)+\left(x-2\right)^{2}=2-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x+1.
18x^{2}-2+\left(x-2\right)^{2}=2-4x
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x+2 ki te 3x-1 ka whakakotahi i ngā kupu rite.
18x^{2}-2+x^{2}-4x+4=2-4x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
19x^{2}-2-4x+4=2-4x
Pahekotia te 18x^{2} me x^{2}, ka 19x^{2}.
19x^{2}+2-4x=2-4x
Tāpirihia te -2 ki te 4, ka 2.
19x^{2}+2-4x+4x=2
Me tāpiri te 4x ki ngā taha e rua.
19x^{2}+2=2
Pahekotia te -4x me 4x, ka 0.
19x^{2}=2-2
Tangohia te 2 mai i ngā taha e rua.
19x^{2}=0
Tangohia te 2 i te 2, ka 0.
x^{2}=0
Whakawehea ngā taha e rua ki te 19. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
x=0 x=0
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x=0
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
2\left(3x+1\right)\left(3x-1\right)+\left(x-2\right)^{2}=2-4x
Whakareatia ngā taha e rua o te whārite ki te 2.
\left(6x+2\right)\left(3x-1\right)+\left(x-2\right)^{2}=2-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x+1.
18x^{2}-2+\left(x-2\right)^{2}=2-4x
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x+2 ki te 3x-1 ka whakakotahi i ngā kupu rite.
18x^{2}-2+x^{2}-4x+4=2-4x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
19x^{2}-2-4x+4=2-4x
Pahekotia te 18x^{2} me x^{2}, ka 19x^{2}.
19x^{2}+2-4x=2-4x
Tāpirihia te -2 ki te 4, ka 2.
19x^{2}+2-4x-2=-4x
Tangohia te 2 mai i ngā taha e rua.
19x^{2}-4x=-4x
Tangohia te 2 i te 2, ka 0.
19x^{2}-4x+4x=0
Me tāpiri te 4x ki ngā taha e rua.
19x^{2}=0
Pahekotia te -4x me 4x, ka 0.
x^{2}=0
Whakawehea ngā taha e rua ki te 19. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
x=\frac{0±\sqrt{0^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±0}{2}
Tuhia te pūtakerua o te 0^{2}.
x=0
Whakawehe 0 ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}