Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x^{2}+6x+1=9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x+1-9=0
Tangohia te 9 mai i ngā taha e rua.
9x^{2}+6x-8=0
Tangohia te 9 i te 1, ka -8.
a+b=6 ab=9\left(-8\right)=-72
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
a=-6 b=12
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(9x^{2}-6x\right)+\left(12x-8\right)
Tuhia anō te 9x^{2}+6x-8 hei \left(9x^{2}-6x\right)+\left(12x-8\right).
3x\left(3x-2\right)+4\left(3x-2\right)
Tauwehea te 3x i te tuatahi me te 4 i te rōpū tuarua.
\left(3x-2\right)\left(3x+4\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{2}{3} x=-\frac{4}{3}
Hei kimi otinga whārite, me whakaoti te 3x-2=0 me te 3x+4=0.
9x^{2}+6x+1=9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x+1-9=0
Tangohia te 9 mai i ngā taha e rua.
9x^{2}+6x-8=0
Tangohia te 9 i te 1, ka -8.
x=\frac{-6±\sqrt{6^{2}-4\times 9\left(-8\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 6 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 9\left(-8\right)}}{2\times 9}
Pūrua 6.
x=\frac{-6±\sqrt{36-36\left(-8\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-6±\sqrt{36+288}}{2\times 9}
Whakareatia -36 ki te -8.
x=\frac{-6±\sqrt{324}}{2\times 9}
Tāpiri 36 ki te 288.
x=\frac{-6±18}{2\times 9}
Tuhia te pūtakerua o te 324.
x=\frac{-6±18}{18}
Whakareatia 2 ki te 9.
x=\frac{12}{18}
Nā, me whakaoti te whārite x=\frac{-6±18}{18} ina he tāpiri te ±. Tāpiri -6 ki te 18.
x=\frac{2}{3}
Whakahekea te hautanga \frac{12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{24}{18}
Nā, me whakaoti te whārite x=\frac{-6±18}{18} ina he tango te ±. Tango 18 mai i -6.
x=-\frac{4}{3}
Whakahekea te hautanga \frac{-24}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{2}{3} x=-\frac{4}{3}
Kua oti te whārite te whakatau.
9x^{2}+6x+1=9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x=9-1
Tangohia te 1 mai i ngā taha e rua.
9x^{2}+6x=8
Tangohia te 1 i te 9, ka 8.
\frac{9x^{2}+6x}{9}=\frac{8}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{6}{9}x=\frac{8}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{2}{3}x=\frac{8}{9}
Whakahekea te hautanga \frac{6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{8}{9}+\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{8+1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{3}x+\frac{1}{9}=1
Tāpiri \frac{8}{9} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{3}\right)^{2}=1
Tauwehea x^{2}+\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{3}=1 x+\frac{1}{3}=-1
Whakarūnātia.
x=\frac{2}{3} x=-\frac{4}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.