Whakaoti mō x
x=\frac{1}{3}\approx 0.333333333
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}+6x+1=4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x+1-4=0
Tangohia te 4 mai i ngā taha e rua.
9x^{2}+6x-3=0
Tangohia te 4 i te 1, ka -3.
3x^{2}+2x-1=0
Whakawehea ngā taha e rua ki te 3.
a+b=2 ab=3\left(-1\right)=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(3x^{2}-x\right)+\left(3x-1\right)
Tuhia anō te 3x^{2}+2x-1 hei \left(3x^{2}-x\right)+\left(3x-1\right).
x\left(3x-1\right)+3x-1
Whakatauwehea atu x i te 3x^{2}-x.
\left(3x-1\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 3x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{3} x=-1
Hei kimi otinga whārite, me whakaoti te 3x-1=0 me te x+1=0.
9x^{2}+6x+1=4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x+1-4=0
Tangohia te 4 mai i ngā taha e rua.
9x^{2}+6x-3=0
Tangohia te 4 i te 1, ka -3.
x=\frac{-6±\sqrt{6^{2}-4\times 9\left(-3\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 6 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 9\left(-3\right)}}{2\times 9}
Pūrua 6.
x=\frac{-6±\sqrt{36-36\left(-3\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-6±\sqrt{36+108}}{2\times 9}
Whakareatia -36 ki te -3.
x=\frac{-6±\sqrt{144}}{2\times 9}
Tāpiri 36 ki te 108.
x=\frac{-6±12}{2\times 9}
Tuhia te pūtakerua o te 144.
x=\frac{-6±12}{18}
Whakareatia 2 ki te 9.
x=\frac{6}{18}
Nā, me whakaoti te whārite x=\frac{-6±12}{18} ina he tāpiri te ±. Tāpiri -6 ki te 12.
x=\frac{1}{3}
Whakahekea te hautanga \frac{6}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{18}{18}
Nā, me whakaoti te whārite x=\frac{-6±12}{18} ina he tango te ±. Tango 12 mai i -6.
x=-1
Whakawehe -18 ki te 18.
x=\frac{1}{3} x=-1
Kua oti te whārite te whakatau.
9x^{2}+6x+1=4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x=4-1
Tangohia te 1 mai i ngā taha e rua.
9x^{2}+6x=3
Tangohia te 1 i te 4, ka 3.
\frac{9x^{2}+6x}{9}=\frac{3}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{6}{9}x=\frac{3}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{2}{3}x=\frac{3}{9}
Whakahekea te hautanga \frac{6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{2}{3}x=\frac{1}{3}
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
Tāpiri \frac{1}{3} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{3}\right)^{2}=\frac{4}{9}
Tauwehea x^{2}+\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{3}=\frac{2}{3} x+\frac{1}{3}=-\frac{2}{3}
Whakarūnātia.
x=\frac{1}{3} x=-1
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}