Whakaoti mō x
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}+6x+1=3\left(3x^{2}+x-2\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x+1=9x^{2}+3x-6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x^{2}+x-2.
9x^{2}+6x+1-9x^{2}=3x-6
Tangohia te 9x^{2} mai i ngā taha e rua.
6x+1=3x-6
Pahekotia te 9x^{2} me -9x^{2}, ka 0.
6x+1-3x=-6
Tangohia te 3x mai i ngā taha e rua.
3x+1=-6
Pahekotia te 6x me -3x, ka 3x.
3x=-6-1
Tangohia te 1 mai i ngā taha e rua.
3x=-7
Tangohia te 1 i te -6, ka -7.
x=\frac{-7}{3}
Whakawehea ngā taha e rua ki te 3.
x=-\frac{7}{3}
Ka taea te hautanga \frac{-7}{3} te tuhi anō ko -\frac{7}{3} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}