Whakaoti mō s
s = \frac{14}{3} = 4\frac{2}{3} \approx 4.666666667
s=0
Tohaina
Kua tāruatia ki te papatopenga
9s^{2}-42s+49-49=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3s-7\right)^{2}.
9s^{2}-42s=0
Tangohia te 49 i te 49, ka 0.
s\left(9s-42\right)=0
Tauwehea te s.
s=0 s=\frac{14}{3}
Hei kimi otinga whārite, me whakaoti te s=0 me te 9s-42=0.
9s^{2}-42s+49-49=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3s-7\right)^{2}.
9s^{2}-42s=0
Tangohia te 49 i te 49, ka 0.
s=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -42 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\left(-42\right)±42}{2\times 9}
Tuhia te pūtakerua o te \left(-42\right)^{2}.
s=\frac{42±42}{2\times 9}
Ko te tauaro o -42 ko 42.
s=\frac{42±42}{18}
Whakareatia 2 ki te 9.
s=\frac{84}{18}
Nā, me whakaoti te whārite s=\frac{42±42}{18} ina he tāpiri te ±. Tāpiri 42 ki te 42.
s=\frac{14}{3}
Whakahekea te hautanga \frac{84}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
s=\frac{0}{18}
Nā, me whakaoti te whārite s=\frac{42±42}{18} ina he tango te ±. Tango 42 mai i 42.
s=0
Whakawehe 0 ki te 18.
s=\frac{14}{3} s=0
Kua oti te whārite te whakatau.
9s^{2}-42s+49-49=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3s-7\right)^{2}.
9s^{2}-42s=0
Tangohia te 49 i te 49, ka 0.
\frac{9s^{2}-42s}{9}=\frac{0}{9}
Whakawehea ngā taha e rua ki te 9.
s^{2}+\left(-\frac{42}{9}\right)s=\frac{0}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
s^{2}-\frac{14}{3}s=\frac{0}{9}
Whakahekea te hautanga \frac{-42}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
s^{2}-\frac{14}{3}s=0
Whakawehe 0 ki te 9.
s^{2}-\frac{14}{3}s+\left(-\frac{7}{3}\right)^{2}=\left(-\frac{7}{3}\right)^{2}
Whakawehea te -\frac{14}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{3}. Nā, tāpiria te pūrua o te -\frac{7}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
s^{2}-\frac{14}{3}s+\frac{49}{9}=\frac{49}{9}
Pūruatia -\frac{7}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(s-\frac{7}{3}\right)^{2}=\frac{49}{9}
Tauwehea s^{2}-\frac{14}{3}s+\frac{49}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-\frac{7}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
s-\frac{7}{3}=\frac{7}{3} s-\frac{7}{3}=-\frac{7}{3}
Whakarūnātia.
s=\frac{14}{3} s=0
Me tāpiri \frac{7}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}