Aromātai
9r^{4}-25t^{4}
Whakaroha
9r^{4}-25t^{4}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
( 3 r ^ { 2 } + 5 t ^ { 2 } ) ( 3 r ^ { 2 } - 5 t ^ { 2 } )
Tohaina
Kua tāruatia ki te papatopenga
\left(3r^{2}\right)^{2}-\left(5t^{2}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}\left(r^{2}\right)^{2}-\left(5t^{2}\right)^{2}
Whakarohaina te \left(3r^{2}\right)^{2}.
3^{2}r^{4}-\left(5t^{2}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9r^{4}-\left(5t^{2}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9r^{4}-5^{2}\left(t^{2}\right)^{2}
Whakarohaina te \left(5t^{2}\right)^{2}.
9r^{4}-5^{2}t^{4}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9r^{4}-25t^{4}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\left(3r^{2}\right)^{2}-\left(5t^{2}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}\left(r^{2}\right)^{2}-\left(5t^{2}\right)^{2}
Whakarohaina te \left(3r^{2}\right)^{2}.
3^{2}r^{4}-\left(5t^{2}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9r^{4}-\left(5t^{2}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9r^{4}-5^{2}\left(t^{2}\right)^{2}
Whakarohaina te \left(5t^{2}\right)^{2}.
9r^{4}-5^{2}t^{4}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9r^{4}-25t^{4}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}