Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3r^{2}\right)^{2}-\left(5t^{2}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}\left(r^{2}\right)^{2}-\left(5t^{2}\right)^{2}
Whakarohaina te \left(3r^{2}\right)^{2}.
3^{2}r^{4}-\left(5t^{2}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9r^{4}-\left(5t^{2}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9r^{4}-5^{2}\left(t^{2}\right)^{2}
Whakarohaina te \left(5t^{2}\right)^{2}.
9r^{4}-5^{2}t^{4}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9r^{4}-25t^{4}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\left(3r^{2}\right)^{2}-\left(5t^{2}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}\left(r^{2}\right)^{2}-\left(5t^{2}\right)^{2}
Whakarohaina te \left(3r^{2}\right)^{2}.
3^{2}r^{4}-\left(5t^{2}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9r^{4}-\left(5t^{2}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9r^{4}-5^{2}\left(t^{2}\right)^{2}
Whakarohaina te \left(5t^{2}\right)^{2}.
9r^{4}-5^{2}t^{4}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9r^{4}-25t^{4}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.