Aromātai
36n^{6}
Whakaroha
36n^{6}
Tohaina
Kua tāruatia ki te papatopenga
\left(3n^{3}\times 2\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(6n^{3}\right)^{2}
Whakareatia te 3 ki te 2, ka 6.
6^{2}\left(n^{3}\right)^{2}
Whakarohaina te \left(6n^{3}\right)^{2}.
6^{2}n^{6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
36n^{6}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\left(3n^{3}\times 2\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(6n^{3}\right)^{2}
Whakareatia te 3 ki te 2, ka 6.
6^{2}\left(n^{3}\right)^{2}
Whakarohaina te \left(6n^{3}\right)^{2}.
6^{2}n^{6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
36n^{6}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}