Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3m^{-2}n^{3}\right)^{3}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
3^{3}\left(m^{-2}\right)^{3}\left(n^{3}\right)^{3}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
27\left(m^{-2}\right)^{3}\left(n^{3}\right)^{3}
Hīkina te 3 ki te pū 3.
27m^{-2\times 3}n^{3\times 3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
27\times \frac{1}{m^{6}}n^{3\times 3}
Whakareatia -2 ki te 3.
27\times \frac{1}{m^{6}}n^{9}
Whakareatia 3 ki te 3.
\left(3m^{-2}n^{3}\right)^{3}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
3^{3}\left(m^{-2}\right)^{3}\left(n^{3}\right)^{3}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
27\left(m^{-2}\right)^{3}\left(n^{3}\right)^{3}
Hīkina te 3 ki te pū 3.
27m^{-2\times 3}n^{3\times 3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
27\times \frac{1}{m^{6}}n^{3\times 3}
Whakareatia -2 ki te 3.
27\times \frac{1}{m^{6}}n^{9}
Whakareatia 3 ki te 3.