Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3m\right)^{2}-\left(7n^{2}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}m^{2}-\left(7n^{2}\right)^{2}
Whakarohaina te \left(3m\right)^{2}.
9m^{2}-\left(7n^{2}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9m^{2}-7^{2}\left(n^{2}\right)^{2}
Whakarohaina te \left(7n^{2}\right)^{2}.
9m^{2}-7^{2}n^{4}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9m^{2}-49n^{4}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
\left(3m\right)^{2}-\left(7n^{2}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}m^{2}-\left(7n^{2}\right)^{2}
Whakarohaina te \left(3m\right)^{2}.
9m^{2}-\left(7n^{2}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9m^{2}-7^{2}\left(n^{2}\right)^{2}
Whakarohaina te \left(7n^{2}\right)^{2}.
9m^{2}-7^{2}n^{4}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
9m^{2}-49n^{4}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.