Aromātai
-6+192000000i
Tohaina
Kua tāruatia ki te papatopenga
\left(3\times 1-5^{1}-20^{6}i^{11}\right)\times 3
Tātaihia te b mā te pū o 0, kia riro ko 1.
\left(3-5^{1}-20^{6}i^{11}\right)\times 3
Whakareatia te 3 ki te 1, ka 3.
\left(3-5-20^{6}i^{11}\right)\times 3
Tātaihia te 5 mā te pū o 1, kia riro ko 5.
\left(-2-20^{6}i^{11}\right)\times 3
Tangohia te 5 i te 3, ka -2.
\left(-2-64000000i^{11}\right)\times 3
Tātaihia te 20 mā te pū o 6, kia riro ko 64000000.
\left(-2-64000000\left(-i\right)\right)\times 3
Tātaihia te i mā te pū o 11, kia riro ko -i.
\left(-2-\left(-64000000i\right)\right)\times 3
Whakareatia te 64000000 ki te -i, ka -64000000i.
\left(-2+64000000i\right)\times 3
Ko te tauaro o -64000000i ko 64000000i.
-6+192000000i
Whakareatia te -2+64000000i ki te 3, ka -6+192000000i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}