Aromātai
4\left(2a^{2}+ab-2b^{2}\right)
Whakaroha
8a^{2}+4ab-8b^{2}
Tohaina
Kua tāruatia ki te papatopenga
\left(3a\right)^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Whakaarohia te \left(3a+2b\right)\left(3a-2b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}a^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Whakarohaina te \left(3a\right)^{2}.
9a^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9a^{2}-2^{2}b^{2}-\left(a-2b\right)^{2}
Whakarohaina te \left(2b\right)^{2}.
9a^{2}-4b^{2}-\left(a-2b\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
9a^{2}-4b^{2}-\left(a^{2}-4ab+4b^{2}\right)
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-2b\right)^{2}.
9a^{2}-4b^{2}-a^{2}+4ab-4b^{2}
Hei kimi i te tauaro o a^{2}-4ab+4b^{2}, kimihia te tauaro o ia taurangi.
8a^{2}-4b^{2}+4ab-4b^{2}
Pahekotia te 9a^{2} me -a^{2}, ka 8a^{2}.
8a^{2}-8b^{2}+4ab
Pahekotia te -4b^{2} me -4b^{2}, ka -8b^{2}.
\left(3a\right)^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Whakaarohia te \left(3a+2b\right)\left(3a-2b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}a^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Whakarohaina te \left(3a\right)^{2}.
9a^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9a^{2}-2^{2}b^{2}-\left(a-2b\right)^{2}
Whakarohaina te \left(2b\right)^{2}.
9a^{2}-4b^{2}-\left(a-2b\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
9a^{2}-4b^{2}-\left(a^{2}-4ab+4b^{2}\right)
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-2b\right)^{2}.
9a^{2}-4b^{2}-a^{2}+4ab-4b^{2}
Hei kimi i te tauaro o a^{2}-4ab+4b^{2}, kimihia te tauaro o ia taurangi.
8a^{2}-4b^{2}+4ab-4b^{2}
Pahekotia te 9a^{2} me -a^{2}, ka 8a^{2}.
8a^{2}-8b^{2}+4ab
Pahekotia te -4b^{2} me -4b^{2}, ka -8b^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}