Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9-x^{2}=3-\left(x-3\right)^{2}
Whakaarohia te \left(3-x\right)\left(3+x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
9-x^{2}=3-\left(x^{2}-6x+9\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
9-x^{2}=3-x^{2}+6x-9
Hei kimi i te tauaro o x^{2}-6x+9, kimihia te tauaro o ia taurangi.
9-x^{2}=-6-x^{2}+6x
Tangohia te 9 i te 3, ka -6.
9-x^{2}+x^{2}=-6+6x
Me tāpiri te x^{2} ki ngā taha e rua.
9=-6+6x
Pahekotia te -x^{2} me x^{2}, ka 0.
-6+6x=9
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6x=9+6
Me tāpiri te 6 ki ngā taha e rua.
6x=15
Tāpirihia te 9 ki te 6, ka 15.
x=\frac{15}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{5}{2}
Whakahekea te hautanga \frac{15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.