Tīpoka ki ngā ihirangi matua
Whakaoti mō B (complex solution)
Tick mark Image
Whakaoti mō g (complex solution)
Tick mark Image
Whakaoti mō B
Tick mark Image
Whakaoti mō g
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3-x+Bgx-Bg=\pi
Whakamahia te āhuatanga tohatoha hei whakarea te Bg ki te x-1.
-x+Bgx-Bg=\pi -3
Tangohia te 3 mai i ngā taha e rua.
Bgx-Bg=\pi -3+x
Me tāpiri te x ki ngā taha e rua.
\left(gx-g\right)B=\pi -3+x
Pahekotia ngā kīanga tau katoa e whai ana i te B.
\left(gx-g\right)B=x+\pi -3
He hanga arowhānui tō te whārite.
\frac{\left(gx-g\right)B}{gx-g}=\frac{x+\pi -3}{gx-g}
Whakawehea ngā taha e rua ki te gx-g.
B=\frac{x+\pi -3}{gx-g}
Mā te whakawehe ki te gx-g ka wetekia te whakareanga ki te gx-g.
B=\frac{x+\pi -3}{g\left(x-1\right)}
Whakawehe x-3+\pi ki te gx-g.
3-x+Bgx-Bg=\pi
Whakamahia te āhuatanga tohatoha hei whakarea te Bg ki te x-1.
-x+Bgx-Bg=\pi -3
Tangohia te 3 mai i ngā taha e rua.
Bgx-Bg=\pi -3+x
Me tāpiri te x ki ngā taha e rua.
\left(Bx-B\right)g=\pi -3+x
Pahekotia ngā kīanga tau katoa e whai ana i te g.
\left(Bx-B\right)g=x+\pi -3
He hanga arowhānui tō te whārite.
\frac{\left(Bx-B\right)g}{Bx-B}=\frac{x+\pi -3}{Bx-B}
Whakawehea ngā taha e rua ki te Bx-B.
g=\frac{x+\pi -3}{Bx-B}
Mā te whakawehe ki te Bx-B ka wetekia te whakareanga ki te Bx-B.
g=\frac{x+\pi -3}{B\left(x-1\right)}
Whakawehe x-3+\pi ki te Bx-B.
3-x+Bgx-Bg=\pi
Whakamahia te āhuatanga tohatoha hei whakarea te Bg ki te x-1.
-x+Bgx-Bg=\pi -3
Tangohia te 3 mai i ngā taha e rua.
Bgx-Bg=\pi -3+x
Me tāpiri te x ki ngā taha e rua.
\left(gx-g\right)B=\pi -3+x
Pahekotia ngā kīanga tau katoa e whai ana i te B.
\left(gx-g\right)B=x+\pi -3
He hanga arowhānui tō te whārite.
\frac{\left(gx-g\right)B}{gx-g}=\frac{x+\pi -3}{gx-g}
Whakawehea ngā taha e rua ki te gx-g.
B=\frac{x+\pi -3}{gx-g}
Mā te whakawehe ki te gx-g ka wetekia te whakareanga ki te gx-g.
B=\frac{x+\pi -3}{g\left(x-1\right)}
Whakawehe x-3+\pi ki te gx-g.
3-x+Bgx-Bg=\pi
Whakamahia te āhuatanga tohatoha hei whakarea te Bg ki te x-1.
-x+Bgx-Bg=\pi -3
Tangohia te 3 mai i ngā taha e rua.
Bgx-Bg=\pi -3+x
Me tāpiri te x ki ngā taha e rua.
\left(Bx-B\right)g=\pi -3+x
Pahekotia ngā kīanga tau katoa e whai ana i te g.
\left(Bx-B\right)g=x+\pi -3
He hanga arowhānui tō te whārite.
\frac{\left(Bx-B\right)g}{Bx-B}=\frac{x+\pi -3}{Bx-B}
Whakawehea ngā taha e rua ki te Bx-B.
g=\frac{x+\pi -3}{Bx-B}
Mā te whakawehe ki te Bx-B ka wetekia te whakareanga ki te Bx-B.
g=\frac{x+\pi -3}{B\left(x-1\right)}
Whakawehe x-3+\pi ki te Bx-B.