Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-14-6x=\left(4-3x\right)\left(5-4x\right)-2
Tangohia te 17 i te 3, ka -14.
-14-6x=20-31x+12x^{2}-2
Whakamahia te āhuatanga tuaritanga hei whakarea te 4-3x ki te 5-4x ka whakakotahi i ngā kupu rite.
-14-6x=18-31x+12x^{2}
Tangohia te 2 i te 20, ka 18.
-14-6x-18=-31x+12x^{2}
Tangohia te 18 mai i ngā taha e rua.
-32-6x=-31x+12x^{2}
Tangohia te 18 i te -14, ka -32.
-32-6x+31x=12x^{2}
Me tāpiri te 31x ki ngā taha e rua.
-32+25x=12x^{2}
Pahekotia te -6x me 31x, ka 25x.
-32+25x-12x^{2}=0
Tangohia te 12x^{2} mai i ngā taha e rua.
-12x^{2}+25x-32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-25±\sqrt{25^{2}-4\left(-12\right)\left(-32\right)}}{2\left(-12\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -12 mō a, 25 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-12\right)\left(-32\right)}}{2\left(-12\right)}
Pūrua 25.
x=\frac{-25±\sqrt{625+48\left(-32\right)}}{2\left(-12\right)}
Whakareatia -4 ki te -12.
x=\frac{-25±\sqrt{625-1536}}{2\left(-12\right)}
Whakareatia 48 ki te -32.
x=\frac{-25±\sqrt{-911}}{2\left(-12\right)}
Tāpiri 625 ki te -1536.
x=\frac{-25±\sqrt{911}i}{2\left(-12\right)}
Tuhia te pūtakerua o te -911.
x=\frac{-25±\sqrt{911}i}{-24}
Whakareatia 2 ki te -12.
x=\frac{-25+\sqrt{911}i}{-24}
Nā, me whakaoti te whārite x=\frac{-25±\sqrt{911}i}{-24} ina he tāpiri te ±. Tāpiri -25 ki te i\sqrt{911}.
x=\frac{-\sqrt{911}i+25}{24}
Whakawehe -25+i\sqrt{911} ki te -24.
x=\frac{-\sqrt{911}i-25}{-24}
Nā, me whakaoti te whārite x=\frac{-25±\sqrt{911}i}{-24} ina he tango te ±. Tango i\sqrt{911} mai i -25.
x=\frac{25+\sqrt{911}i}{24}
Whakawehe -25-i\sqrt{911} ki te -24.
x=\frac{-\sqrt{911}i+25}{24} x=\frac{25+\sqrt{911}i}{24}
Kua oti te whārite te whakatau.
-14-6x=\left(4-3x\right)\left(5-4x\right)-2
Tangohia te 17 i te 3, ka -14.
-14-6x=20-31x+12x^{2}-2
Whakamahia te āhuatanga tuaritanga hei whakarea te 4-3x ki te 5-4x ka whakakotahi i ngā kupu rite.
-14-6x=18-31x+12x^{2}
Tangohia te 2 i te 20, ka 18.
-14-6x+31x=18+12x^{2}
Me tāpiri te 31x ki ngā taha e rua.
-14+25x=18+12x^{2}
Pahekotia te -6x me 31x, ka 25x.
-14+25x-12x^{2}=18
Tangohia te 12x^{2} mai i ngā taha e rua.
25x-12x^{2}=18+14
Me tāpiri te 14 ki ngā taha e rua.
25x-12x^{2}=32
Tāpirihia te 18 ki te 14, ka 32.
-12x^{2}+25x=32
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-12x^{2}+25x}{-12}=\frac{32}{-12}
Whakawehea ngā taha e rua ki te -12.
x^{2}+\frac{25}{-12}x=\frac{32}{-12}
Mā te whakawehe ki te -12 ka wetekia te whakareanga ki te -12.
x^{2}-\frac{25}{12}x=\frac{32}{-12}
Whakawehe 25 ki te -12.
x^{2}-\frac{25}{12}x=-\frac{8}{3}
Whakahekea te hautanga \frac{32}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{25}{12}x+\left(-\frac{25}{24}\right)^{2}=-\frac{8}{3}+\left(-\frac{25}{24}\right)^{2}
Whakawehea te -\frac{25}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{25}{24}. Nā, tāpiria te pūrua o te -\frac{25}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{25}{12}x+\frac{625}{576}=-\frac{8}{3}+\frac{625}{576}
Pūruatia -\frac{25}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{25}{12}x+\frac{625}{576}=-\frac{911}{576}
Tāpiri -\frac{8}{3} ki te \frac{625}{576} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{25}{24}\right)^{2}=-\frac{911}{576}
Tauwehea x^{2}-\frac{25}{12}x+\frac{625}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{24}\right)^{2}}=\sqrt{-\frac{911}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{25}{24}=\frac{\sqrt{911}i}{24} x-\frac{25}{24}=-\frac{\sqrt{911}i}{24}
Whakarūnātia.
x=\frac{25+\sqrt{911}i}{24} x=\frac{-\sqrt{911}i+25}{24}
Me tāpiri \frac{25}{24} ki ngā taha e rua o te whārite.