( 3 - \frac { x } { 2 } - ( 1 - \frac { x } { 3 } ) = 7 - ( x - \frac { x } { 2 } )
Whakaoti mō x
x=15
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(3-\frac{x}{2}\right)-6\left(1-\frac{x}{3}\right)=42-6\left(x-\frac{x}{2}\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
18+6\left(-\frac{x}{2}\right)-6\left(1-\frac{x}{3}\right)=42-6\left(x-\frac{x}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 3-\frac{x}{2}.
18-3x-6\left(1-\frac{x}{3}\right)=42-6\left(x-\frac{x}{2}\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 6 me te 2.
18-3x-6\left(1-\frac{x}{3}\right)=42-6\times \frac{1}{2}x
Pahekotia te x me -\frac{x}{2}, ka \frac{1}{2}x.
18-3x-6\left(1-\frac{x}{3}\right)=42-\frac{6}{2}x
Whakareatia te 6 ki te \frac{1}{2}, ka \frac{6}{2}.
18-3x-6\left(1-\frac{x}{3}\right)=42-3x
Whakawehea te 6 ki te 2, kia riro ko 3.
18-3x-6\left(1-\frac{x}{3}\right)+3x=42
Me tāpiri te 3x ki ngā taha e rua.
3\left(18-3x-6\left(1-\frac{x}{3}\right)\right)+9x=126
Whakareatia ngā taha e rua o te whārite ki te 3.
9\left(18-3x-6\left(1-\frac{x}{3}\right)\right)+27x=378
Whakareatia ngā taha e rua o te whārite ki te 3.
9\left(18-3x-6+6\times \frac{x}{3}\right)+27x=378
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te 1-\frac{x}{3}.
9\left(18-3x-6+2x\right)+27x=378
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 6 me te 3.
9\left(12-3x+2x\right)+27x=378
Tangohia te 6 i te 18, ka 12.
9\left(12-x\right)+27x=378
Pahekotia te -3x me 2x, ka -x.
108-9x+27x=378
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te 12-x.
108+18x=378
Pahekotia te -9x me 27x, ka 18x.
18x=378-108
Tangohia te 108 mai i ngā taha e rua.
18x=270
Tangohia te 108 i te 378, ka 270.
x=\frac{270}{18}
Whakawehea ngā taha e rua ki te 18.
x=15
Whakawehea te 270 ki te 18, kia riro ko 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}