Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(x^{6}\left(-x\right)^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
3\left(x^{6}\right)^{2}\left(\left(-x\right)^{3}\right)^{2}
Whakarohaina te \left(x^{6}\left(-x\right)^{3}\right)^{2}.
3x^{12}\left(\left(-x\right)^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
3x^{12}\left(-x\right)^{6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
3x^{12}\left(-1\right)^{6}x^{6}
Whakarohaina te \left(-x\right)^{6}.
3x^{12}\times 1x^{6}
Tātaihia te -1 mā te pū o 6, kia riro ko 1.
3x^{12}x^{6}
Whakareatia te 3 ki te 1, ka 3.
3x^{18}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 12 me te 6 kia riro ai te 18.
3\left(x^{6}\left(-x\right)^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
3\left(x^{6}\right)^{2}\left(\left(-x\right)^{3}\right)^{2}
Whakarohaina te \left(x^{6}\left(-x\right)^{3}\right)^{2}.
3x^{12}\left(\left(-x\right)^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
3x^{12}\left(-x\right)^{6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
3x^{12}\left(-1\right)^{6}x^{6}
Whakarohaina te \left(-x\right)^{6}.
3x^{12}\times 1x^{6}
Tātaihia te -1 mā te pū o 6, kia riro ko 1.
3x^{12}x^{6}
Whakareatia te 3 ki te 1, ka 3.
3x^{18}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 12 me te 6 kia riro ai te 18.