Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
\left(3\left(-\frac{24}{29}\right)-2\right)^{2}=\left(\frac{-24}{29}-5\right)\left(9\times \frac{-24}{29}+4\right)
Ka taea te hautanga \frac{-24}{29} te tuhi anō ko -\frac{24}{29} mā te tango i te tohu tōraro.
\left(-\frac{72}{29}-2\right)^{2}=\left(\frac{-24}{29}-5\right)\left(9\times \frac{-24}{29}+4\right)
Whakareatia te 3 ki te -\frac{24}{29}, ka -\frac{72}{29}.
\left(-\frac{130}{29}\right)^{2}=\left(\frac{-24}{29}-5\right)\left(9\times \frac{-24}{29}+4\right)
Tangohia te 2 i te -\frac{72}{29}, ka -\frac{130}{29}.
\frac{16900}{841}=\left(\frac{-24}{29}-5\right)\left(9\times \frac{-24}{29}+4\right)
Tātaihia te -\frac{130}{29} mā te pū o 2, kia riro ko \frac{16900}{841}.
\frac{16900}{841}=\left(-\frac{24}{29}-5\right)\left(9\times \frac{-24}{29}+4\right)
Ka taea te hautanga \frac{-24}{29} te tuhi anō ko -\frac{24}{29} mā te tango i te tohu tōraro.
\frac{16900}{841}=-\frac{169}{29}\left(9\times \frac{-24}{29}+4\right)
Tangohia te 5 i te -\frac{24}{29}, ka -\frac{169}{29}.
\frac{16900}{841}=-\frac{169}{29}\left(9\left(-\frac{24}{29}\right)+4\right)
Ka taea te hautanga \frac{-24}{29} te tuhi anō ko -\frac{24}{29} mā te tango i te tohu tōraro.
\frac{16900}{841}=-\frac{169}{29}\left(-\frac{216}{29}+4\right)
Whakareatia te 9 ki te -\frac{24}{29}, ka -\frac{216}{29}.
\frac{16900}{841}=-\frac{169}{29}\left(-\frac{100}{29}\right)
Tāpirihia te -\frac{216}{29} ki te 4, ka -\frac{100}{29}.
\frac{16900}{841}=\frac{16900}{841}
Whakareatia te -\frac{169}{29} ki te -\frac{100}{29}, ka \frac{16900}{841}.
\text{true}
Whakatauritea te \frac{16900}{841} me te \frac{16900}{841}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}