Aromātai
14\sqrt{6}+21\sqrt{10}-2\sqrt{15}-15\approx 77.95472057
Tauwehe
14 \sqrt{6} + 21 \sqrt{10} - 2 \sqrt{15} - 15 = 77.95472057
Tohaina
Kua tāruatia ki te papatopenga
21\sqrt{5}\sqrt{2}-3\left(\sqrt{5}\right)^{2}+14\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{5}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3\sqrt{5}+2\sqrt{3} ki ia tau o 7\sqrt{2}-\sqrt{5}.
21\sqrt{10}-3\left(\sqrt{5}\right)^{2}+14\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{5}
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
21\sqrt{10}-3\times 5+14\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{5}
Ko te pūrua o \sqrt{5} ko 5.
21\sqrt{10}-15+14\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{5}
Whakareatia te -3 ki te 5, ka -15.
21\sqrt{10}-15+14\sqrt{6}-2\sqrt{3}\sqrt{5}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
21\sqrt{10}-15+14\sqrt{6}-2\sqrt{15}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}