Aromātai
18-2\sqrt{6}\approx 13.101020514
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( 3 \sqrt { 48 } - 4 \sqrt { 2 } ) \div 2 \sqrt { 3 } )
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\times 4\sqrt{3}-4\sqrt{2}}{2}\sqrt{3}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{12\sqrt{3}-4\sqrt{2}}{2}\sqrt{3}
Whakareatia te 3 ki te 4, ka 12.
\frac{\left(12\sqrt{3}-4\sqrt{2}\right)\sqrt{3}}{2}
Tuhia te \frac{12\sqrt{3}-4\sqrt{2}}{2}\sqrt{3} hei hautanga kotahi.
\frac{12\left(\sqrt{3}\right)^{2}-4\sqrt{2}\sqrt{3}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 12\sqrt{3}-4\sqrt{2} ki te \sqrt{3}.
\frac{12\times 3-4\sqrt{2}\sqrt{3}}{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{36-4\sqrt{2}\sqrt{3}}{2}
Whakareatia te 12 ki te 3, ka 36.
\frac{36-4\sqrt{6}}{2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}