Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\times 4\sqrt{3}-4\sqrt{2}}{2}\sqrt{3}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{12\sqrt{3}-4\sqrt{2}}{2}\sqrt{3}
Whakareatia te 3 ki te 4, ka 12.
\frac{\left(12\sqrt{3}-4\sqrt{2}\right)\sqrt{3}}{2}
Tuhia te \frac{12\sqrt{3}-4\sqrt{2}}{2}\sqrt{3} hei hautanga kotahi.
\frac{12\left(\sqrt{3}\right)^{2}-4\sqrt{2}\sqrt{3}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 12\sqrt{3}-4\sqrt{2} ki te \sqrt{3}.
\frac{12\times 3-4\sqrt{2}\sqrt{3}}{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{36-4\sqrt{2}\sqrt{3}}{2}
Whakareatia te 12 ki te 3, ka 36.
\frac{36-4\sqrt{6}}{2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.