Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9\left(\sqrt{2}\right)^{2}-12\sqrt{3}\sqrt{2}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3\sqrt{2}+2\sqrt{3} ki ia tau o 3\sqrt{2}-4\sqrt{3}.
9\times 2-12\sqrt{3}\sqrt{2}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
18-12\sqrt{3}\sqrt{2}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
Whakareatia te 9 ki te 2, ka 18.
18-12\sqrt{6}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
18-12\sqrt{6}+6\sqrt{6}-8\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
18-6\sqrt{6}-8\left(\sqrt{3}\right)^{2}
Pahekotia te -12\sqrt{6} me 6\sqrt{6}, ka -6\sqrt{6}.
18-6\sqrt{6}-8\times 3
Ko te pūrua o \sqrt{3} ko 3.
18-6\sqrt{6}-24
Whakareatia te -8 ki te 3, ka -24.
-6-6\sqrt{6}
Tangohia te 24 i te 18, ka -6.