Aromātai
-6\sqrt{6}-6\approx -20.696938457
Tauwehe
6 {(-\sqrt{6} - 1)} = -20.696938457
Tohaina
Kua tāruatia ki te papatopenga
9\left(\sqrt{2}\right)^{2}-12\sqrt{3}\sqrt{2}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3\sqrt{2}+2\sqrt{3} ki ia tau o 3\sqrt{2}-4\sqrt{3}.
9\times 2-12\sqrt{3}\sqrt{2}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
18-12\sqrt{3}\sqrt{2}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
Whakareatia te 9 ki te 2, ka 18.
18-12\sqrt{6}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
18-12\sqrt{6}+6\sqrt{6}-8\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
18-6\sqrt{6}-8\left(\sqrt{3}\right)^{2}
Pahekotia te -12\sqrt{6} me 6\sqrt{6}, ka -6\sqrt{6}.
18-6\sqrt{6}-8\times 3
Ko te pūrua o \sqrt{3} ko 3.
18-6\sqrt{6}-24
Whakareatia te -8 ki te 3, ka -24.
-6-6\sqrt{6}
Tangohia te 24 i te 18, ka -6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}