Whakaoti mō h
h=13
h=-13
Tohaina
Kua tāruatia ki te papatopenga
3^{2}\left(\sqrt{17}\right)^{2}+4^{2}=h^{2}
Whakarohaina te \left(3\sqrt{17}\right)^{2}.
9\left(\sqrt{17}\right)^{2}+4^{2}=h^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9\times 17+4^{2}=h^{2}
Ko te pūrua o \sqrt{17} ko 17.
153+4^{2}=h^{2}
Whakareatia te 9 ki te 17, ka 153.
153+16=h^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
169=h^{2}
Tāpirihia te 153 ki te 16, ka 169.
h^{2}=169
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h^{2}-169=0
Tangohia te 169 mai i ngā taha e rua.
\left(h-13\right)\left(h+13\right)=0
Whakaarohia te h^{2}-169. Tuhia anō te h^{2}-169 hei h^{2}-13^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
h=13 h=-13
Hei kimi otinga whārite, me whakaoti te h-13=0 me te h+13=0.
3^{2}\left(\sqrt{17}\right)^{2}+4^{2}=h^{2}
Whakarohaina te \left(3\sqrt{17}\right)^{2}.
9\left(\sqrt{17}\right)^{2}+4^{2}=h^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9\times 17+4^{2}=h^{2}
Ko te pūrua o \sqrt{17} ko 17.
153+4^{2}=h^{2}
Whakareatia te 9 ki te 17, ka 153.
153+16=h^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
169=h^{2}
Tāpirihia te 153 ki te 16, ka 169.
h^{2}=169
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h=13 h=-13
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3^{2}\left(\sqrt{17}\right)^{2}+4^{2}=h^{2}
Whakarohaina te \left(3\sqrt{17}\right)^{2}.
9\left(\sqrt{17}\right)^{2}+4^{2}=h^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9\times 17+4^{2}=h^{2}
Ko te pūrua o \sqrt{17} ko 17.
153+4^{2}=h^{2}
Whakareatia te 9 ki te 17, ka 153.
153+16=h^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
169=h^{2}
Tāpirihia te 153 ki te 16, ka 169.
h^{2}=169
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h^{2}-169=0
Tangohia te 169 mai i ngā taha e rua.
h=\frac{0±\sqrt{0^{2}-4\left(-169\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -169 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{0±\sqrt{-4\left(-169\right)}}{2}
Pūrua 0.
h=\frac{0±\sqrt{676}}{2}
Whakareatia -4 ki te -169.
h=\frac{0±26}{2}
Tuhia te pūtakerua o te 676.
h=13
Nā, me whakaoti te whārite h=\frac{0±26}{2} ina he tāpiri te ±. Whakawehe 26 ki te 2.
h=-13
Nā, me whakaoti te whārite h=\frac{0±26}{2} ina he tango te ±. Whakawehe -26 ki te 2.
h=13 h=-13
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}