Aromātai
29a^{6}-39b^{8}
Whakaroha
29a^{6}-39b^{8}
Tohaina
Kua tāruatia ki te papatopenga
\left(3a^{2}\right)^{3}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3bb^{3}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 3 kia riro ai te 6.
\left(3a^{2}\right)^{3}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
3^{3}\left(a^{2}\right)^{3}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Whakarohaina te \left(3a^{2}\right)^{3}.
3^{3}a^{6}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
27a^{6}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
27a^{6}-3\times 2^{4}\left(b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Whakarohaina te \left(2b^{2}\right)^{4}.
27a^{6}-3\times 2^{4}b^{8}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 4 kia riro ai te 8.
27a^{6}-3\times 16b^{8}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
27a^{6}-48b^{8}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Whakareatia te 3 ki te 16, ka 48.
29a^{6}-48b^{8}+\left(3b^{4}\right)^{2}
Pahekotia te 27a^{6} me a^{6}\times 2, ka 29a^{6}.
29a^{6}-48b^{8}+3^{2}\left(b^{4}\right)^{2}
Whakarohaina te \left(3b^{4}\right)^{2}.
29a^{6}-48b^{8}+3^{2}b^{8}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 2 kia riro ai te 8.
29a^{6}-48b^{8}+9b^{8}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
29a^{6}-39b^{8}
Pahekotia te -48b^{8} me 9b^{8}, ka -39b^{8}.
\left(3a^{2}\right)^{3}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3bb^{3}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 3 kia riro ai te 6.
\left(3a^{2}\right)^{3}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
3^{3}\left(a^{2}\right)^{3}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Whakarohaina te \left(3a^{2}\right)^{3}.
3^{3}a^{6}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
27a^{6}-3\times \left(2b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
27a^{6}-3\times 2^{4}\left(b^{2}\right)^{4}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Whakarohaina te \left(2b^{2}\right)^{4}.
27a^{6}-3\times 2^{4}b^{8}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 4 kia riro ai te 8.
27a^{6}-3\times 16b^{8}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
27a^{6}-48b^{8}+a^{6}\times 2+\left(3b^{4}\right)^{2}
Whakareatia te 3 ki te 16, ka 48.
29a^{6}-48b^{8}+\left(3b^{4}\right)^{2}
Pahekotia te 27a^{6} me a^{6}\times 2, ka 29a^{6}.
29a^{6}-48b^{8}+3^{2}\left(b^{4}\right)^{2}
Whakarohaina te \left(3b^{4}\right)^{2}.
29a^{6}-48b^{8}+3^{2}b^{8}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 2 kia riro ai te 8.
29a^{6}-48b^{8}+9b^{8}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
29a^{6}-39b^{8}
Pahekotia te -48b^{8} me 9b^{8}, ka -39b^{8}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}