Aromātai
20
Tauwehe
2^{2}\times 5
Tohaina
Kua tāruatia ki te papatopenga
\frac{27-2\times 9}{3}+\frac{\left(\frac{4^{3}-2\times 7-2^{2}\times 5}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
\frac{27-18}{3}+\frac{\left(\frac{4^{3}-2\times 7-2^{2}\times 5}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Whakareatia te 2 ki te 9, ka 18.
\frac{9}{3}+\frac{\left(\frac{4^{3}-2\times 7-2^{2}\times 5}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Tangohia te 18 i te 27, ka 9.
3+\frac{\left(\frac{4^{3}-2\times 7-2^{2}\times 5}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Whakawehea te 9 ki te 3, kia riro ko 3.
3+\frac{\left(\frac{64-2\times 7-2^{2}\times 5}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Tātaihia te 4 mā te pū o 3, kia riro ko 64.
3+\frac{\left(\frac{64-14-2^{2}\times 5}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Whakareatia te 2 ki te 7, ka 14.
3+\frac{\left(\frac{50-2^{2}\times 5}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Tangohia te 14 i te 64, ka 50.
3+\frac{\left(\frac{50-4\times 5}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
3+\frac{\left(\frac{50-20}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Whakareatia te 4 ki te 5, ka 20.
3+\frac{\left(\frac{30}{10}\right)^{2}+1}{5}+4^{2}-7^{0}
Tangohia te 20 i te 50, ka 30.
3+\frac{3^{2}+1}{5}+4^{2}-7^{0}
Whakawehea te 30 ki te 10, kia riro ko 3.
3+\frac{9+1}{5}+4^{2}-7^{0}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
3+\frac{10}{5}+4^{2}-7^{0}
Tāpirihia te 9 ki te 1, ka 10.
3+2+4^{2}-7^{0}
Whakawehea te 10 ki te 5, kia riro ko 2.
5+4^{2}-7^{0}
Tāpirihia te 3 ki te 2, ka 5.
5+16-7^{0}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
21-7^{0}
Tāpirihia te 5 ki te 16, ka 21.
21-1
Tātaihia te 7 mā te pū o 0, kia riro ko 1.
20
Tangohia te 1 i te 21, ka 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}