Aromātai
\frac{\sqrt{2}+6}{4}\approx 1.853553391
Tauwehe
\frac{\sqrt{2} + 6}{4} = 1.8535533905932737
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}\times 1+\frac{1}{2}\times \frac{\sqrt{2}}{2}
Whakawehea te 2 ki te 2, kia riro ko 1.
\frac{3}{2}+\frac{1}{2}\times \frac{\sqrt{2}}{2}
Whakareatia te \frac{3}{2} ki te 1, ka \frac{3}{2}.
\frac{3}{2}+\frac{\sqrt{2}}{2\times 2}
Me whakarea te \frac{1}{2} ki te \frac{\sqrt{2}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3\times 2}{2\times 2}+\frac{\sqrt{2}}{2\times 2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2\times 2 ko 2\times 2. Whakareatia \frac{3}{2} ki te \frac{2}{2}.
\frac{3\times 2+\sqrt{2}}{2\times 2}
Tā te mea he rite te tauraro o \frac{3\times 2}{2\times 2} me \frac{\sqrt{2}}{2\times 2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6+\sqrt{2}}{2\times 2}
Mahia ngā whakarea i roto o 3\times 2+\sqrt{2}.
\frac{6+\sqrt{2}}{4}
Whakarohaina te 2\times 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}