Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3}{2}\times 1+\frac{1}{2}\times \frac{\sqrt{2}}{2}
Whakawehea te 2 ki te 2, kia riro ko 1.
\frac{3}{2}+\frac{1}{2}\times \frac{\sqrt{2}}{2}
Whakareatia te \frac{3}{2} ki te 1, ka \frac{3}{2}.
\frac{3}{2}+\frac{\sqrt{2}}{2\times 2}
Me whakarea te \frac{1}{2} ki te \frac{\sqrt{2}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3\times 2}{2\times 2}+\frac{\sqrt{2}}{2\times 2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2\times 2 ko 2\times 2. Whakareatia \frac{3}{2} ki te \frac{2}{2}.
\frac{3\times 2+\sqrt{2}}{2\times 2}
Tā te mea he rite te tauraro o \frac{3\times 2}{2\times 2} me \frac{\sqrt{2}}{2\times 2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6+\sqrt{2}}{2\times 2}
Mahia ngā whakarea i roto o 3\times 2+\sqrt{2}.
\frac{6+\sqrt{2}}{4}
Whakarohaina te 2\times 2.