Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9+6x+x^{2}=\left(3-x\right)^{2}+16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+x\right)^{2}.
9+6x+x^{2}=9-6x+x^{2}+16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3-x\right)^{2}.
9+6x+x^{2}=25-6x+x^{2}
Tāpirihia te 9 ki te 16, ka 25.
9+6x+x^{2}+6x=25+x^{2}
Me tāpiri te 6x ki ngā taha e rua.
9+12x+x^{2}=25+x^{2}
Pahekotia te 6x me 6x, ka 12x.
9+12x+x^{2}-x^{2}=25
Tangohia te x^{2} mai i ngā taha e rua.
9+12x=25
Pahekotia te x^{2} me -x^{2}, ka 0.
12x=25-9
Tangohia te 9 mai i ngā taha e rua.
12x=16
Tangohia te 9 i te 25, ka 16.
x=\frac{16}{12}
Whakawehea ngā taha e rua ki te 12.
x=\frac{4}{3}
Whakahekea te hautanga \frac{16}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.