Whakaoti mō r
r=3\sqrt{14}-9\approx 2.22497216
r=-3\sqrt{14}-9\approx -20.22497216
Tohaina
Kua tāruatia ki te papatopenga
9+6r+r^{2}+\left(15+r\right)^{2}=18^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+r\right)^{2}.
9+6r+r^{2}+225+30r+r^{2}=18^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(15+r\right)^{2}.
234+6r+r^{2}+30r+r^{2}=18^{2}
Tāpirihia te 9 ki te 225, ka 234.
234+36r+r^{2}+r^{2}=18^{2}
Pahekotia te 6r me 30r, ka 36r.
234+36r+2r^{2}=18^{2}
Pahekotia te r^{2} me r^{2}, ka 2r^{2}.
234+36r+2r^{2}=324
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
234+36r+2r^{2}-324=0
Tangohia te 324 mai i ngā taha e rua.
-90+36r+2r^{2}=0
Tangohia te 324 i te 234, ka -90.
2r^{2}+36r-90=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-36±\sqrt{36^{2}-4\times 2\left(-90\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 36 mō b, me -90 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-36±\sqrt{1296-4\times 2\left(-90\right)}}{2\times 2}
Pūrua 36.
r=\frac{-36±\sqrt{1296-8\left(-90\right)}}{2\times 2}
Whakareatia -4 ki te 2.
r=\frac{-36±\sqrt{1296+720}}{2\times 2}
Whakareatia -8 ki te -90.
r=\frac{-36±\sqrt{2016}}{2\times 2}
Tāpiri 1296 ki te 720.
r=\frac{-36±12\sqrt{14}}{2\times 2}
Tuhia te pūtakerua o te 2016.
r=\frac{-36±12\sqrt{14}}{4}
Whakareatia 2 ki te 2.
r=\frac{12\sqrt{14}-36}{4}
Nā, me whakaoti te whārite r=\frac{-36±12\sqrt{14}}{4} ina he tāpiri te ±. Tāpiri -36 ki te 12\sqrt{14}.
r=3\sqrt{14}-9
Whakawehe -36+12\sqrt{14} ki te 4.
r=\frac{-12\sqrt{14}-36}{4}
Nā, me whakaoti te whārite r=\frac{-36±12\sqrt{14}}{4} ina he tango te ±. Tango 12\sqrt{14} mai i -36.
r=-3\sqrt{14}-9
Whakawehe -36-12\sqrt{14} ki te 4.
r=3\sqrt{14}-9 r=-3\sqrt{14}-9
Kua oti te whārite te whakatau.
9+6r+r^{2}+\left(15+r\right)^{2}=18^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+r\right)^{2}.
9+6r+r^{2}+225+30r+r^{2}=18^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(15+r\right)^{2}.
234+6r+r^{2}+30r+r^{2}=18^{2}
Tāpirihia te 9 ki te 225, ka 234.
234+36r+r^{2}+r^{2}=18^{2}
Pahekotia te 6r me 30r, ka 36r.
234+36r+2r^{2}=18^{2}
Pahekotia te r^{2} me r^{2}, ka 2r^{2}.
234+36r+2r^{2}=324
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
36r+2r^{2}=324-234
Tangohia te 234 mai i ngā taha e rua.
36r+2r^{2}=90
Tangohia te 234 i te 324, ka 90.
2r^{2}+36r=90
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2r^{2}+36r}{2}=\frac{90}{2}
Whakawehea ngā taha e rua ki te 2.
r^{2}+\frac{36}{2}r=\frac{90}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
r^{2}+18r=\frac{90}{2}
Whakawehe 36 ki te 2.
r^{2}+18r=45
Whakawehe 90 ki te 2.
r^{2}+18r+9^{2}=45+9^{2}
Whakawehea te 18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 9. Nā, tāpiria te pūrua o te 9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}+18r+81=45+81
Pūrua 9.
r^{2}+18r+81=126
Tāpiri 45 ki te 81.
\left(r+9\right)^{2}=126
Tauwehea r^{2}+18r+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+9\right)^{2}}=\sqrt{126}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r+9=3\sqrt{14} r+9=-3\sqrt{14}
Whakarūnātia.
r=3\sqrt{14}-9 r=-3\sqrt{14}-9
Me tango 9 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}