Aromātai
3+4i
Wāhi Tūturu
3
Tohaina
Kua tāruatia ki te papatopenga
\left(3+4i\right)^{1}
Whakawehea te 1 ki te 1, kia riro ko 1.
3+4i
Tātaihia te 3+4i mā te pū o 1, kia riro ko 3+4i.
Re(\left(3+4i\right)^{1})
Whakawehea te 1 ki te 1, kia riro ko 1.
Re(3+4i)
Tātaihia te 3+4i mā te pū o 1, kia riro ko 3+4i.
3
Ko te wāhi tūturu o 3+4i ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}