Whakaoti mō y
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
9+12y+4y^{2}+2y^{2}=3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+2y\right)^{2}.
9+12y+6y^{2}=3
Pahekotia te 4y^{2} me 2y^{2}, ka 6y^{2}.
9+12y+6y^{2}-3=0
Tangohia te 3 mai i ngā taha e rua.
6+12y+6y^{2}=0
Tangohia te 3 i te 9, ka 6.
1+2y+y^{2}=0
Whakawehea ngā taha e rua ki te 6.
y^{2}+2y+1=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=1\times 1=1
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei y^{2}+ay+by+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(y^{2}+y\right)+\left(y+1\right)
Tuhia anō te y^{2}+2y+1 hei \left(y^{2}+y\right)+\left(y+1\right).
y\left(y+1\right)+y+1
Whakatauwehea atu y i te y^{2}+y.
\left(y+1\right)\left(y+1\right)
Whakatauwehea atu te kīanga pātahi y+1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(y+1\right)^{2}
Tuhia anōtia hei pūrua huarua.
y=-1
Hei kimi i te otinga whārite, whakaotia te y+1=0.
9+12y+4y^{2}+2y^{2}=3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+2y\right)^{2}.
9+12y+6y^{2}=3
Pahekotia te 4y^{2} me 2y^{2}, ka 6y^{2}.
9+12y+6y^{2}-3=0
Tangohia te 3 mai i ngā taha e rua.
6+12y+6y^{2}=0
Tangohia te 3 i te 9, ka 6.
6y^{2}+12y+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-12±\sqrt{12^{2}-4\times 6\times 6}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 12 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 6\times 6}}{2\times 6}
Pūrua 12.
y=\frac{-12±\sqrt{144-24\times 6}}{2\times 6}
Whakareatia -4 ki te 6.
y=\frac{-12±\sqrt{144-144}}{2\times 6}
Whakareatia -24 ki te 6.
y=\frac{-12±\sqrt{0}}{2\times 6}
Tāpiri 144 ki te -144.
y=-\frac{12}{2\times 6}
Tuhia te pūtakerua o te 0.
y=-\frac{12}{12}
Whakareatia 2 ki te 6.
y=-1
Whakawehe -12 ki te 12.
9+12y+4y^{2}+2y^{2}=3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+2y\right)^{2}.
9+12y+6y^{2}=3
Pahekotia te 4y^{2} me 2y^{2}, ka 6y^{2}.
12y+6y^{2}=3-9
Tangohia te 9 mai i ngā taha e rua.
12y+6y^{2}=-6
Tangohia te 9 i te 3, ka -6.
6y^{2}+12y=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{6y^{2}+12y}{6}=-\frac{6}{6}
Whakawehea ngā taha e rua ki te 6.
y^{2}+\frac{12}{6}y=-\frac{6}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
y^{2}+2y=-\frac{6}{6}
Whakawehe 12 ki te 6.
y^{2}+2y=-1
Whakawehe -6 ki te 6.
y^{2}+2y+1^{2}=-1+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+2y+1=-1+1
Pūrua 1.
y^{2}+2y+1=0
Tāpiri -1 ki te 1.
\left(y+1\right)^{2}=0
Tauwehea y^{2}+2y+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+1\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+1=0 y+1=0
Whakarūnātia.
y=-1 y=-1
Me tango 1 mai i ngā taha e rua o te whārite.
y=-1
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}