Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3y+\sqrt{2}y\right)\left(3-\sqrt{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3+\sqrt{2} ki te y.
9y-3\sqrt{2}y+3\sqrt{2}y-y\left(\sqrt{2}\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3y+\sqrt{2}y ki ia tau o 3-\sqrt{2}.
9y-y\left(\sqrt{2}\right)^{2}
Pahekotia te -3\sqrt{2}y me 3\sqrt{2}y, ka 0.
9y-y\times 2
Ko te pūrua o \sqrt{2} ko 2.
9y-2y
Whakareatia te -1 ki te 2, ka -2.
7y
Pahekotia te 9y me -2y, ka 7y.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(3y+\sqrt{2}y\right)\left(3-\sqrt{2}\right))
Whakamahia te āhuatanga tohatoha hei whakarea te 3+\sqrt{2} ki te y.
\frac{\mathrm{d}}{\mathrm{d}y}(9y-3\sqrt{2}y+3\sqrt{2}y-y\left(\sqrt{2}\right)^{2})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3y+\sqrt{2}y ki ia tau o 3-\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(9y-y\left(\sqrt{2}\right)^{2})
Pahekotia te -3\sqrt{2}y me 3\sqrt{2}y, ka 0.
\frac{\mathrm{d}}{\mathrm{d}y}(9y-y\times 2)
Ko te pūrua o \sqrt{2} ko 2.
\frac{\mathrm{d}}{\mathrm{d}y}(9y-2y)
Whakareatia te -1 ki te 2, ka -2.
\frac{\mathrm{d}}{\mathrm{d}y}(7y)
Pahekotia te 9y me -2y, ka 7y.
7y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
7y^{0}
Tango 1 mai i 1.
7\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
7
Mō tētahi kupu t, t\times 1=t me 1t=t.