Aromātai
7y
Kimi Pārōnaki e ai ki y
7
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3y+\sqrt{2}y\right)\left(3-\sqrt{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3+\sqrt{2} ki te y.
9y-3\sqrt{2}y+3\sqrt{2}y-y\left(\sqrt{2}\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3y+\sqrt{2}y ki ia tau o 3-\sqrt{2}.
9y-y\left(\sqrt{2}\right)^{2}
Pahekotia te -3\sqrt{2}y me 3\sqrt{2}y, ka 0.
9y-y\times 2
Ko te pūrua o \sqrt{2} ko 2.
9y-2y
Whakareatia te -1 ki te 2, ka -2.
7y
Pahekotia te 9y me -2y, ka 7y.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(3y+\sqrt{2}y\right)\left(3-\sqrt{2}\right))
Whakamahia te āhuatanga tohatoha hei whakarea te 3+\sqrt{2} ki te y.
\frac{\mathrm{d}}{\mathrm{d}y}(9y-3\sqrt{2}y+3\sqrt{2}y-y\left(\sqrt{2}\right)^{2})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3y+\sqrt{2}y ki ia tau o 3-\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(9y-y\left(\sqrt{2}\right)^{2})
Pahekotia te -3\sqrt{2}y me 3\sqrt{2}y, ka 0.
\frac{\mathrm{d}}{\mathrm{d}y}(9y-y\times 2)
Ko te pūrua o \sqrt{2} ko 2.
\frac{\mathrm{d}}{\mathrm{d}y}(9y-2y)
Whakareatia te -1 ki te 2, ka -2.
\frac{\mathrm{d}}{\mathrm{d}y}(7y)
Pahekotia te 9y me -2y, ka 7y.
7y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
7y^{0}
Tango 1 mai i 1.
7\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
7
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}