Aromātai
\frac{13}{12}\approx 1.083333333
Tauwehe
\frac{13}{2 ^ {2} \cdot 3} = 1\frac{1}{12} = 1.0833333333333333
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( 3 + \frac { 1 } { 4 } ) - ( 2 + \frac { 1 } { 6 } ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{12}{4}+\frac{1}{4}-\left(2+\frac{1}{6}\right)
Me tahuri te 3 ki te hautau \frac{12}{4}.
\frac{12+1}{4}-\left(2+\frac{1}{6}\right)
Tā te mea he rite te tauraro o \frac{12}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{4}-\left(2+\frac{1}{6}\right)
Tāpirihia te 12 ki te 1, ka 13.
\frac{13}{4}-\left(\frac{12}{6}+\frac{1}{6}\right)
Me tahuri te 2 ki te hautau \frac{12}{6}.
\frac{13}{4}-\frac{12+1}{6}
Tā te mea he rite te tauraro o \frac{12}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{4}-\frac{13}{6}
Tāpirihia te 12 ki te 1, ka 13.
\frac{39}{12}-\frac{26}{12}
Ko te maha noa iti rawa atu o 4 me 6 ko 12. Me tahuri \frac{13}{4} me \frac{13}{6} ki te hautau me te tautūnga 12.
\frac{39-26}{12}
Tā te mea he rite te tauraro o \frac{39}{12} me \frac{26}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{13}{12}
Tangohia te 26 i te 39, ka 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}